PIPLARTINE AND PIPERINE: a review of their biological activities

  • Minelly Azevedo da Silva IFRO - Campus Porto Velho Calama
  • FRANCISMEIRE BONADEU DA SILVA Instituto Federal de Educação, Ciência e Tecnologia de Rondônia – campus: Colorado do Oeste – Br 399 Km 05 Caixa Postal 51, Sitio Zona Rural Colorado do Oeste - RO CEP: 76993-000
  • GUILHERME MATOS PASSARINI Universidade Federal de Rondônia – Programa de Pós Graduação em Biologia Experimental – UNIR. Campus José Ribeiro Filho, BR 364, Km 9,5. Porto Velho/RO, 76801-059
  • SAARA NERI FIALHO Rede de Biodiversidade e Biotecnologia da Amazônia Legal – Bionorte. BR 364, Km 9,5. Porto Velho/RO, 76801-059;
  • ANA PAULA DE AZEVEDO DOS SANTOS Fundação Oswaldo Cruz – Rondônia (FIOCRUZ –RO). Rua da Beira - Lagoa, 7671, Porto Velho/RO, 76812-245;
  • LEANDRO DO NASCIMENTO MARTINEZ Universidade Federal de Rondônia – Programa de Pós Graduação em Biologia Experimental – UNIR. Campus José Ribeiro Filho, BR 364, Km 9,5. Porto Velho/RO, 76801-059
  • CAROLINA BIONI GARCIA TELES Fundação Oswaldo Cruz – Rondônia (FIOCRUZ –RO). Rua da Beira - Lagoa, 7671, Porto Velho/RO, 76812-245;
  • CHRISTIAN COLLIN KUEHN Universidade Federal de Rondônia – Programa de Pós Graduação em Biologia Experimental – UNIR. Campus José Ribeiro Filho, BR 364, Km 9,5. Porto Velho/RO, 76801-059

Resumo

Piplatina e piperina amidas são encontradas em espécies pertencentes à família Piperaceae. As plantas desta família são amplamente utilizadas em partes da região amazônica para o tratamento de algumas doenças, na culinária e como plantas ornamentais. Nesse contexto, esta revisão bibliográfica das amidas acima mencionadas teve como objetivo fornecer uma coleção de dados publicados para orientar novos estudos sobre as atividades biológicas dessas substâncias (de origem natural ou sintética). A busca bibliográfica foi realizada no portal periódico da CAPES, utilizando as palavras-chave “piplartina”, “piperina” e “atividade”. As referências utilizadas neste estudo foram analisadas selecionando apenas artigos revisados ​​por pares publicados entre dezembro de 2013 e dezembro de 2018 (piplartine) e 2017-2018 (piperine). A revisão também resume as atividades antileishmanial e antiplasmodial investigadas com as substâncias (1993-2018). Na revisão, não apontamos dados como curvas de resposta à dose, controles negativos e positivos. Nesse sentido, a revisão destaca as atividades biológicas, os modelos de teste e os resultados obtidos com essas substâncias, com ênfase nas atividades mais investigadas. A partir desta pesquisa, concluímos que a piplartina e a piperina foram extensivamente investigadas. As atividades biológicas descritas aqui podem orientar futuras pesquisas que buscarão relacionar o potencial dessas amidas e seus respectivos análogos sintéticos com outras atividades biológicas. De fato, compostos que são conhecidos há muito tempo e não atingiram o status de medicina baseada em evidências requerem análises adicionais.

Biografia do Autor

Minelly Azevedo da Silva, IFRO - Campus Porto Velho Calama
Licenciada em Química pela Universidade Federal de Rondônia (2009); Mestre em Educação Escolar pela Universidade Federal de Rondônia - UNIR (2015). Trabalhou como professora de Química na Faculdade de Meio Ambiente - FAEMA, Instituto Profissionalizante de Ensino - IEP, Governo do Estado de Rondônia e pesquisadora bolsista CNPQ - Produtos Naturais - na Universidade Federal de Rondônia - UNIR (2006-2008). Atualmente é professora de Química do Instituto Federal de Educação Básica, Técnica e Tecnológica de Rondônia - IFRO. Doutoranda em Biologia Experimental - UNIR
FRANCISMEIRE BONADEU DA SILVA, Instituto Federal de Educação, Ciência e Tecnologia de Rondônia – campus: Colorado do Oeste – Br 399 Km 05 Caixa Postal 51, Sitio Zona Rural Colorado do Oeste - RO CEP: 76993-000

Licenciatura e Bacharelado em Ciências Biológicas pela Universidade Federal de Rondônia (2007), com ênfase em florística. Mestrado em Botânica Tropical pela Universidade Federal Rural da Amazônia (UFRA)/Museu Paraense Emílio Goeldi (MPEG) (2010), com ênfase em taxonomia de Leguminosae. Tem experiência na área de Botânica, destacam-se como principais linhas de pequisas: Taxonomia e morfologia de Leguminosae, florística, coleções científicas, distribuição geográfica e conservação na Amazônia e fisiologia vegetal. Fui bolsista PCI-DTI-7G na área de Botânica, com ênfase em Florística e Taxonomia Vegetal. Atuando principalmente nos seguintes temas:TAXONOMIA DE LEGUMINOSAE-MIMOSOIDEAE; MORFOLOGIA DE FRUTOS, SEMENTES, PLÂNTULAS E PLÂNTULAS JOVENS DE ESPÉCIES LENHOSAS DA AMAZÔNIA. Fui bolsista de Desenvolvimento Tecnológico Industrial - C do Jardim Botânico do Rio de Janeiro, junto ao herbário trabalhando com coleções botânicas. Fui professora do Instituto Federal de Rondônia e curadora do Herbário COOE.

GUILHERME MATOS PASSARINI, Universidade Federal de Rondônia – Programa de Pós Graduação em Biologia Experimental – UNIR. Campus José Ribeiro Filho, BR 364, Km 9,5. Porto Velho/RO, 76801-059

Possui graduação em Ciências Biológicas (Bacharelado e Licenciatura) pela Universidade Federal de Rondônia (2014) e mestrado em Biologia Experimental pela Universidade Federal de Rondônia. Atualmente é estagiário da Fundação Oswaldo Cruz - Rondônia. Tem experiência na área de Parasitologia, com ênfase em quimioterapia experimental de doenças parasitárias in vitro, e em fitoquímica.

SAARA NERI FIALHO, Rede de Biodiversidade e Biotecnologia da Amazônia Legal – Bionorte. BR 364, Km 9,5. Porto Velho/RO, 76801-059;

Possui graduação em Ciências Biológicas (Bacharelado) pelo Centro Universitário São Lucas de Porto Velho - UNISL-RO (2017). Foi membro fundadora da Liga Acadêmica de Ciências Biológicas -LACBIO. Participou do Programa de Iniciação Cientifica da FAPERO - Fundação Rondônia de Amparo ao Desenvolvimento das Ações Científicas e Tecnológicas e à Pesquisa do Estado de Rondônia, com o projeto intitulado Avaliação da Atividade Leishmanicida de Derivados Sintéticos do ácido cinâmico contra Leishmania amazonensis in vitro com período de 2 anos. Foi Bolsista CNPq Modalidade-Nível: Desenvolvimento Tecnológico Industrial - C pelo Instituto Nacional de Epidemiologia da Amazônia Ocidental INCT-EpiAmO e Bolsista Fiotec, atuando como Técnica de Laboratório, colaborando no desenvolvimento de pesquisas relacionadas ao cultivo de células de linhagem e parasitos com ênfase em quimioterapia de Leishmaniose e Malária, assim como, estudos in vivo, no grupo de pesquisa do laboratório Plataforma de Bioensaios em Malária e Leishmaniose, localizado na Instituição de pesquisa Fundação Oswaldo Cruz, (FRIOCRUZ-RO).

ANA PAULA DE AZEVEDO DOS SANTOS, Fundação Oswaldo Cruz – Rondônia (FIOCRUZ –RO). Rua da Beira - Lagoa, 7671, Porto Velho/RO, 76812-245;

Graduada em Ciências Biológicas no Centro Universitário São Lucas UNISL, Porto velho-RO. Doutorado pela Universidade Federal de Rondônia (UNIR). Colaboradora da Plataforma de Bioensaios de Malária e Leishmaniose da Fiocruz/ Rondônia, Porto Velho. Possui experiencia na área de Ecologia e Biologia, Histopatologia, Leishmaniose com ênfase em Quimioterapia para o tratamento de Leishmaniose, Epidemiologia, Ensaios in vitro contra microrganismos, Biologia Molecular de Parasitos e Ensaios Imunoenzimáticos.

LEANDRO DO NASCIMENTO MARTINEZ, Universidade Federal de Rondônia – Programa de Pós Graduação em Biologia Experimental – UNIR. Campus José Ribeiro Filho, BR 364, Km 9,5. Porto Velho/RO, 76801-059

Possui graduação em CIÊNCIAS BIOLÓGICAS LICENCIATURA pela Faculdade de Educação de Porto Velho - UNIRON-RO (2016). Participou do grupo de pesquisa do Laboratório de Epidemiologia Molecular da Malária no Centro de Pesquisa em Medicina Tropical (CEPEM), localizado na avenida Guaporé anexo a Unidade Hospitalar CEMETRON em Porto Velho, com projetos ligados a levantamento etnobotânicos de plantas com potenciais medicinais na região da Amazônia Brasileira. Atualmente participa do grupo de pesquisa da Plataforma Técnica de Bioensaios de Malária e Leishmaniose, localizado na Instituição de pesquisa Fundação Oswaldo Cruz, (FRIOCRUZ RONDÔNIA) desenvolvendo pesquisas relacionado ao cultivo de células de linhagem e parasitos com ênfase em quimioterapia de Leishmaniose e Malária, além de estudos in vivo. Atualmente é pós-graduando a nível de mestrado pelo programa de Pós-Graduação em Biologia Experimental pela Fundação Universidade Federal de Rondônia-UNIR (2018).

CAROLINA BIONI GARCIA TELES, Fundação Oswaldo Cruz – Rondônia (FIOCRUZ –RO). Rua da Beira - Lagoa, 7671, Porto Velho/RO, 76812-245;

Graduada em Ciências Biológicas pela Universidade Estadual Paulista Júlio Mesquita Filho UNESP, Mestre em Biologia Experimental pela Universidade Federal de Rondônia (UNIR) e Doutora pela Universidade de São Paulo (USP). Atua como Pesquisadora em Saúde Pública e Chefe da Plataforma de Bioensaios de Malária e Leishmaniose da Fiocruz/ Rondônia, Porto Velho. Membro do Corpo Docente Permanente e do Colegiado do Programa Curso de Pós-Graduação em Biologia Experimental da Universidade Federal de Rondônia. Também integra o quadro de docentes permanentes da Pós-graduação em Biotecnologia (PGBIONORTE) da Rede de Biodiversidade e Biotecnologia da Amazônia Legal (REDE BIONORTE). Atuou na equipe do Núcleo de Inovação Tecnológica (NIT/ Fiocruz RO) no período de 2014-2016. Membro Titular da Comissão de Ética no Uso de Animais (CEUA/ Fiocruz/RO). Membro da Comissão Interna de Biossegurança (CIBio/ Fiocruz RO). Membro do Instituto Nacional de Ciência e Tecnologia para Pesquisa do Instituto Nacional de Epidemiologia na Amazônia Ocidental - INCT-EpiAmO. Docente no Centro Universitário São Lucas (UNiSL) em Porto Velho RO. Possui experiência laboratorial com ênfase em técnicas de biologia celular (cultivo de células) e ensaios biológicos antiparasitários in vitro, in vivo e ex vivo, principalmente envolvendo agentes etiológicos da Leishmaniose e Malária. Atua nos seguintes temas: Quimioterapia para o tratamento de Leishmaniose e Malária, e Epidemiologia da Leishmaniose. 

CHRISTIAN COLLIN KUEHN, Universidade Federal de Rondônia – Programa de Pós Graduação em Biologia Experimental – UNIR. Campus José Ribeiro Filho, BR 364, Km 9,5. Porto Velho/RO, 76801-059

Graduado em Biomedicina pelo Centro Universitário da Grande Dourados - UNIGRAN - Dourados/MS (2005). Doutor e mestre pela Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo - USP de 2007 à 2013. Realizou Doutorado Sanduíche na Universidade de Valencia - Espanha, trabalhando em colaboração com a Rede de Excelência de Centros em Enfermidades Tropicais (RICET) no ano de 2012. Especialista em Análises Clínicas e Patológicas pelo Centro Universitário Barão de Mauá (UBM) - Ribeirão Preto/SP (2007). Atualmente é professor Adjunto no curso de Medicina pela Universidade Federal de Rondônia - UNIR com dedicação exclusiva nas cadeiras de Parasitologia e Microbiologia, bem como Coordenador do Programa de Pós-Graduação em Biologia Experimental (PGBIOEXP/UNIR).

Referências

[1] CHATTERJEE, A.; DUTTA, C.P. Alkaloids of Piper longum Linn. I. Structure and synthesis of piperlongumine and piperlonguminine. Tetrahedron. 1967; 23(4), 1769– 1781.
[2] BOLL, P.M.; HANSEN, J.; SIMONSEN, O.; THORUP, N. Synthesis and molecular structure of piplartine (piperlongumine). Tetrahedron. 1984; 40(1), 171–175.
[3] MHASKE, D.B.; SREEDHARAN, S.; MAHADIK, K.R. Role of Piperine as an Effective Bioenhancer in Drug Absorption. Pharmaceutica Analytica Acta. 2018; 9:591.
[4] DEWICK, P.M. Medicinal Natural Products: a biosynthetic approach. New York: John Wiley & Sons. 2008; 546p.
[5] DUKE, J. Duke’s handbook of medicinal plants of the Bible. 2007; ISBN 978-0-8493-8202-4 (alk. paper).
[6] ANISZEWSKI, T. E-book: Alkaloids - Secrets of Life: Aklaloid Chemistry, Biological Significance, Applications and Ecological Role. 2007; 7st Edition. Elsevier Science.
[7] HENRY, T.A. The plant alkaloids. The blakiston company. Philadelphia – Toronto. 1949; Four edition.
[8] YUNCKER, T.G. The Piperaceae of Brazil. Piper, Group I, II, III, IV. Hoehnea. 1972; 2: 19-366
[9] YUNCKER, T.G. The Piperaceae of Brazil II. Piper, Group V: Ottonia, Pothomorphe, Sarcorhachis. Hoehnea. 1973; 3: 29-284
[10] YUNCKER, T.G. The Piperaceae of Brazil III. Peperomia: Taxa of uncertain status. Hoehnea. 1974; 4: 71-413.
[11] BFG - The Brazil Flora Group. Growing knowledge: a overview of Seed Plant diversity in Brazil. Rodriguésia. 2015; 66(4): 1-29.
[12] WANKE, S.; SAMAIN, M.S.; VANDERSCHAEVE, L.; MATHIEU, G.; GOETGHEBEUR, P.; NEINHUIS, C. Phylogeny of the genus Peperomia (Piperaceae) inferred from the trnK/matK region (cpDNA). Plant Biology. 2006; 8(1) 93–102.
[13] WANKE, S.; JARAMILLO, M.A.; BORSCH T, SAMAIN MS, QUANDT D, NEINHUIS C. Evolution of Piperales-matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Molecular Phylogenetics and Evolution. 2007; 42(2) 477–497.
[14] BIZERRIL, M.X.A.; RAW, A. Feeding Behaviour of Bats and the Dispersal of Piper arboreum Seeds in Brazil Stable. URL: http://www,jstor.org/stable/2559871. Accessed: 10-03-2016 14: UTC. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, ava. 2016; 14(1), 109-114.
[15] JARAMILLO, M.A.; MANOS, P.S. Phylogeny and patterns of floral diversity in the genus Piper (Piperaceae). American Journal of Botany. 2001; 88(4), 706–716.
[16] FACUNDO, V.A.; DA SILVEIRA, A.S.P.; MORAIS, S.M. Constituents of Piper alatabaccum Trel & Yuncker (Piperaceae). Biochemical Systematics and Ecology. 2005; 33(7): 753-756.
[17] MONTEIRO, D.; GUIMARÃES, E.F. Flora do Parque Nacional do Iatiaia – Brasil: Manekia e Piper (Piperaceae) do Parque Nacional do Itatiaia. Rodriguésia. 2009; 60 (4): 999-1024. Disponível em: https://rodriguesia.jbrj.gov.br/FASCICULOS/rodrig60_4/054-09.pdf. Acesso realizado em: 02 de outubro de 2017, às 22h19min.
[18] PARMAR, V.S. JAIN, S.C.; BISHT, K.S.; JAIN, R.; TANEJA, P.; JHA, A.; BOLL, P.M. Phytochemistry Of The Genus Piper. Phytochemistry. 1997; 46(4), 597–673.
[19] JOHRI, R.K.; THUSU, N.; KHAJURIA, A.; ZUTSHI, U. Piperine-mediated changes in the permeability of rat intestinal epithelial cells. The status of γ-glutamyl transpeptidase activity, uptake of amino acids and lipid peroxidation. Biochemical Pharmacology. 1992; 43(7), 1401–1407.
[20] EGUSA, H.; DOI, M.; SAEKI, M.; FUKUYASU, S.; AKASHI, Y.; YOKOTA, Y.; YATANI, H.; KAMISAKI, Y. The small molecule harmine regulates NFATc1 and Id2 expression in osteoclast progenitor cells. Bone. 2011; Aug;49(2):264-74.
[21] FARZIN, D.; HAGHPARAST, A.; MOTAMAN, S.; BARYAR, F.; MANSOURI, N. Effects of harmane and other β-carbolines on apomorphine-induced licking behavior in rat. Pharmacol Biochem Behav. 2011; Apr; 98(2):215-9.
[22] BOUAYAD, N.; RHARRABE, K.; LAMHAMDI, M.; NOUROUTI, N.G.; SAYAH, F. Dietary effects of harmine, a β-carboline alkaloid, on development, energy reserves and α-amylase activity of Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Saudi J Biol Sci. 2012; Jan; 19(1):73-80.
[23] SINGH, T.P.; SINGH, O.M. Recent Progress in Biological Activities of Indole and Indole Alkaloids. Mini-Reviews in Medicinal Chemistry. 2018; Volume 18, Issue 1.
[24] SCHNEIDER, M.J. Chapter Two Pyridine and piperidine alkaloids: An update. Alkaloids: Chemical and Biological Perspectives. 1996; 155–299. p. 239 e 240.
[25] RIOS, M.Y.; OLIVO, H.F. Alkamidas Naturais e Sintéticas. Estudos em Química de Produtos Naturais. 2014; 79–121.p. 88.
[26] VASAVIRAMA, K.; UPENDER, M. Piperine: A Valuable Alkaloid From Piper Species. International Journal Of Pharmacy And Pharmaceutical Sciences. 2014; Vol 6, Issue 4, 34-38
[27] CHOPRA, B.; DHINGRA, A.K.; KAPOOR, R.P.; PRASAD, D.N. Piperine and Its Various Physicochemical and Biological Aspects: A Review. Open Chemistry Journal. 2016; v. 3, 75-96.
[28] GURINDERDEEP, S. Piperine: A Remarkable Marker with Intense Biological Activity. International Journal of Pharmacognosy & Chinese. Medicine. 2017; Volume 1 Issue 4.
[29] GORGANI, L.; MOHAMMADI, M.; NAJAFPOUR, G.D.; NIKZAD, M. Piperine – The Bioactive Compound of Black Pepper: From Isolation to Medicinal Formulations. Comprehensive Reviewsin Food Science and Food Safety. 2016; (1), 124-140.
[30] HAN, S.S.; SON, D.J.; YUN, H.; KAMBEROS, N.L.; JANZ, S. Piperlongumine inhibits proliferation and survival of Burkitt lymphoma in vitro. Leuk Res. 2013; Feb; 37(2):146-54. Epub 2012 Dec 10.
[31] YAO, Z.; YAO, J.; HE X, LI.; Z, LIU Y. Experimental study of piperlongumine inducing apoptosis of human breast adenoma MDA-MB-231 cells. The Chinese-German Journal of Clinical Oncology. 2013; 12(7), 319-325.
[32] RANDHAWA, H.; KIBBLE, K.; ZENG, H.; MOYER, M.P.; REINDL, K.M. Activation of ERK signaling and induction of colon cancer cell death by piperlongumine. Toxicol in vitro. 2013; Sep;27(6):1626-33.
[33] GINZBURG, S.; GOLOVINE, K.V.; MAKHOV, P.B.; UZZO, R.G.; KUTIKOV, A.; KOLENKO, V.M. Piperlongumine inhibits NF-κB activity and attenuates aggressive growth characteristics of prostate cancer cells. Prostate. 2014; Feb;74(2):177-86.
[34] ROH, J.L.; KIM, E.H.; PARK, J.Y.; KIM, J.W.; KWON, M.; LEE, B.H. Piperlongumine selectively kills cancer cells and increases cisplatin antitumor activity in head and neck cancer. Oncotarget. 2014; 5(19), 9227-9238.
[35] GONG, L.H.; CHEN, X.X.; WANG, H.; JIANG, Q.W.; PAN, S.S.; QIU, J.G.; MEI, X.L.; XUE, Y.Q.; QIN, W.M.; ZHENG, F.Y.; SHI, Z.; YAN, X.J. Piperlongumine induces apoptosis and synergizes with cisplatin or paclitaxel in human ovarian cancer cells. Oxid Med Cell Longev. 2014; 906804. doi: 10.1155/2014/906804.
[36] HAN, J.G.; GUPTA, S.C.; PRASAD, S.; AGGARWAL, B.B. Piperlongumine chemosensitizes tumor cells through interaction with cysteine 179 of IkappaBalpha kinase, leading to suppression of NF-kappaB-regulated gene products. Molecular cancer therapeutics. 2014; Oct; 13 (10): 2422-35.molcanther-0171.
[37] LIU, Q.R.; LIU, J.M.; CHEN, Y.; XIE, X.Q.; XIONG, X.X.; QIU, X.Y.; LIU, DI.; CHEN, X.Q. Piperlongumine inhibits migration of glioblastoma cells via activation of ROS-dependent p38 and JNK signaling pathways. Oxidative medicine and cellular longevity. 2014; (3): 653732, 12 pages
[38] SHRIVASTAVA, S.; KULKARNI, P.; THUMMURI, D.; JEENGAR, M.K.; NAIDU, V.G.; ALVALA, M.; REDDDY, G.B.; RAMAKRISHNA, S. Piperlongumine, an alkaloid causes inhibition of PI3 K/Akt/mTOR signaling axis to induce caspase-dependent apoptosis in human triple-negative breast cancer cells. Apoptosis. 2014; Jul;19(7):1148-64.
[39] KIM, T.H.; SONG, J.; KIM, S.H.; PARIKH, A.K.; MO, X.; PALANICHAMY, K.; KAUR, B.; YU, J.; YOON, S.O.; NAKANO, I.; KWON, C.H. Piperlongumine treatment inactivates peroxiredoxin 4, exacerbates endoplasmic reticulum stress, and preferentially kills high-grade glioma cells. Neuro Oncol. 2014; Oct;16(10):1354-64.
[40] BEZERRA, D.P.; FERREIRA, P.M.; MACHADO, C.M.; DE AQUINO, N.C.; SILVEIRA, E.R.; CHAMMAS R, PESSOA C. Antitumour efficacy of Piper tuberculatum and piplartine based on the hollow fiber assay. Planta Med. 2015; Jan;81(1):15-9.
[41] NIU, M.; XU, X.; SHEN, Y.; YAO, Y.; QIAO, J.; ZHU, F.; ZENG, L.; LIU, X.; XU, K. Piperlongumine is a novel nuclear export inhibitor with potent anticancer activity. Chemico-biological interactions. 2015; 237, 66-72.
[42] LI, W.; WEN, C.; BAI, H.; WANG, X.; ZHANG, X.; HUANG, L.; YANG, X.; IWAMOTO, A.; LIU, H. J.N.K. Signaling pathway is involved in piperlongumine-mediated apoptosis in human colorectal cancer HCT116 cells. Oncol Lett. 2015; Aug;10(2):709-715.
[43] CHEN, Y.; LIU, J.M.; XIONG, X.X.; QIU, X.Y.; PAN, F.; LIU, D.; LAN, S.J.; JIN, S.; YU, S.B.; CHEN, X.Q. Piperlongumine selectively kills hepatocellular carcinoma cells and preferentially inhibits their invasion via ROS-ER-MAPKs-CHOP. Oncotarget. 2015; Mar 20;6(8):6406-21.
[44] SOMMERWERK, S.; KLUGE, R.; STRÖHL, D.; HELLER, L.; KRAMELL, A.E.; OGIOLDA, S.; LIEBING, P.; CSUK, R. Synthesis, characterization and cytotoxicity of new piplartine dimers. Tetrahedron. 2016; 72(11), 1447-1454.
[45] ALPAY, M.; YURDAKOK-DIKMEN, B.; KISMALI, G.; SEL, T. Antileukemic effects of piperlongumine and alpha lipoic acid combination on Jurkat, MEC1 and NB4 cells in vitro. Journal of cancer research and therapeutics. 2016; 12(2), 556.
[46] ZOU, P.; XIA, Y.; JI, J.; CHEN, W.; ZHANG, J.; CHEN, X.; RAJAMANICKAM, V.; CHEN, G.; WANG, Z.; CHEN, L.; WANG, Y.; YANG, S.; LIANG, G. Piperlongumine as a direct TrxR1 inhibitor with suppressive activity against gastric cancer. Cancer Lett. 2016; May 28;375(1):114-126.
[47] SONG, B.; ZHAN, H.; BIAN, Q.; GU, J. Piperlongumine inhibits gastric cancer cells via suppression of the JAK1, 2/STAT3 signaling pathway. Molecular medicine reports. 2016; 13(5), 4475-4480.
[48] VALLI, M.; ALTEI, W.; DOS SANTOS, R.N.; DE LUCCA JR., E.C.; DESSOY, M.A.; PIOLI, R.M.; COTINGUIBA, F.; CACHET, X.; MICHEL, S.; FURLAN, M.; DIAS, L.C. ANDRICOPULO, ADRIANO D.; BOLZANI, VANDERLAN S. Synthetic analogue of the natural product piperlongumine as a potent inhibitor of breast cancer cell line migration. Journal of the Brazilian Chemical Society. 2017; v. 28, n. 3, p. 475-484.
[49] D'SOUSA COSTA, C.O.; ARAUJO NETO, J.H.; BALIZA, I.R.S.; DIAS, R.B.; VALVERDE, L.F.; VIDAL, M.T.A.; SALES, C.B.S.; ROCHA, C.A.G.; MOREIRA, D.R.M.; SOARES, M.B.P.; BATISTA, A.A.; BEZERRA, D.P. Novel piplartine-containing ruthenium complexes: synthesis, cell growth inhibition, apoptosis induction and ROS production on HCT116 cells. Oncotarget. 2017; Nov 1;8(61):104367-104392.
[50] ZOU YU; DI ZHAO; CHANG YAN; YANPENG JI; JIN LIU; JINYI XU; YISHENG LAI; JIDE TIAN; YIHUA ZHANG AND ZHANGJIAN HUANG. Novel Ligustrazine-Based Analogs of Piperlongumine Potently Suppress Proliferation and Metastasis of Colorectal Cancer Cells in vitro and in vivo. Journal of medicinal chemistry. 2018; v. 61, n. 5, p. 1821-1832.
[51] SONG, X.; GAO, T.; LEI, Q.; ZHANG, L.; YAO, Y.; XIONG, J. Piperlongumine Induces Apoptosis in Human Melanoma Cells Via Reactive Oxygen Species Mediated Mitochondria Disruption. Nutrition and cancer. 2018; 70(3), 502-511.
[52] CHEN, Y.J.; KUO, C.C.; TING, L.L.; LU, L.S.; LU, Y.C.; CHENG, A.J.; LIN, Y.T.; CHEN, C.H.; TSAI, J.T.; CHIOU, J.F. Piperlongumine inhibits cancer stem cell properties and regulates multiple malignant phenotypes in oral cancer. Oncol Lett. 2018; Feb;15(2):1789-1798. Epub 2017 Nov 24.
[53] MOHAMMAD, J.; DHILLON, H.; CHIKARA, S.; MAMIDI, S.; SREEDASYAM, A.; CHITTEM, K.; ORR, M.; WILKINSON, J.C.; REINDL, K.M. Piperlongumine potentiates the effects of gemcitabine in vitro and in vivo human pancreatic cancer models. Oncotarget. 2018; Dec 23;9(12):10457-10469.
[54] KARKI, K.; HEDRICK, E.; KASIAPPAN, R.; JIN, U.H.; SAFE, S. Piperlongumine induces reactive oxygen species (ROS)-dependent downregulation of specificity protein transcription factors. Cancer Prevention Research. 2017; canprevres-0053.
[55] MEEGAN, M.J.; NATHWANI, S.; TWAMLEY, B.; ZISTERER, D.M.; O'BOYLE, N.M. Piperlongumine (piplartine) and analogues: Antiproliferative microtubule-destabilising agents. Eur J Med Chem. 2017; Jan 5;125:453-463.
[56] SEOK, J.S.; JEONG, C.H.; PETRIELLO, M.C.; SEO, H.G.; YOO, H.; HONG, K.; HAN, S.G. Piperlongumine decreases cell proliferation and the expression of cell cycle-associated proteins by inhibiting Akt pathway in human lung cancer cells. Food and Chemical Toxicology. 2018; 111, 9-18.
[57] FOFARIA, N.M.; QHATTAL, H.S.S.; LIU, X.; SRIVASTAVA, S.K. Nanoemulsion formulations for anti-cancer agent piplartine—Characterization, toxicological, pharmacokinetics and efficacy studies. International journal of pharmaceutics. 2016; 498(1-2), 12-22.
[58] PENG, S.; ZHANG, B.; MENG, X.; YAO, J.; FANG, J. Synthesis of piperlongumine analogues and discovery of nuclear factor erythroid 2-related factor 2 (Nrf2) activators as potential neuroprotective agents. Journal of medicinal chemistry. 2015; 58(13), 5242-5255.
[59] CAMPELO, Y.; OMBREDANE, A.; VASCONCELOS, A.G.; ALBUQUERQUE, L.; MOREIRA, D.C.; PLÁCIDO, A.; ROCHA, J.; FOKOUE H.H.; YAMAGUCHI, L.; MAFUD, A.; MASCARENHAS, Y.P.; DELERUE-MATOS, C.; BORGES, T.; JOANITTI, G.A.; ARCANJO, D.; KATO, M.J.; KUCKELHAUS, S.A.S.; SILVA, M.P.N.; MORAES, J.; LEITE, J.R.S.A. Structure-Activity Relationship of Piplartine and Synthetic Analogues against Schistosoma mansoni and Cytotoxicity to Mammalian Cells. Int J Mol Sci. 2018; Jun 19;19(6).
[60] BOSC, E.; NASTRI, J.; LEFORT, V.; VALLI, M.; CONTIGUIBA, F.; PIOLI, R.; FURLAN, M.; BOLZANI, V.D.S.; EL AMRI, C.; REBOUD-RAVAUX, M. Piperlongumine and some of its analogs inhibit selectively the human immunoproteasome over the constitutive proteasome. Biochem Biophys Res Commun. 2018; Feb 12;496(3):961-966.
[61] XU, S.; XIAO, Y.; ZENG, S.; ZOU, Y.; QIU, Q.; HUANG, M.; ZHAN, Z.; LIANG, L.; YANG, X.; XU, H. Piperlongumine inhibits the proliferation, migration and invasion of fibroblast-like synoviocytes from patients with rheumatoid arthritis. Inflamm Res. 2018; Mar; 67(3):233-243.
[62] BURCI, L.M.; PEREIRA, I.T.; DA SILVA, L.M.; RODRIGUES, R.V.; FACUNDO, V.A.; MILITÃO, J.S.; SANTOS, A.R.; MARQUES, M.C.; BAGGIO, C.H.; WERNER, M.F. Antiulcer and gastric antisecretory effects of dichloromethane fraction and piplartine obtained from fruits of Piper tuberculatum Jacq. in rats. J Ethnopharmacol. 2013; Jun 21;148(1):165-74.
[63] GO, J.; HA, QUY; YEON SEO, JI; PARK, TAE-SHIN; RYU, YOUNG-KYOUNG; PARK, HYE-YEON; NOH, JUNG-RAN; KIM, YONG-HOON HWANG, JUNG CHOI, DONG-HEE; YOUN HWANG, DAE; KIM, SANGHEE; LEE, CHUL-HO; KEUN OH, WON; KIM, KYOUNG-SHIM. Piperlongumine activates Sirtuin1 and improves cognitive function in a murine model of Alzheimer’s disease. Journal of Functional Foods. 2018; v. 43, p. 103-111.
[64] HU, Y.; YAN, J. Piperlongumine attenuates IL-1β-induced inflammatory response in chondrocytes. Biomedical Research. 2018; v. 29, n. 6.
[65] LEE, W.; YOO, H.; KU, S.K.; KIM, J.A.; BAE, J.S. Anticoagulant activities of piperlonguminine in vitro and in vivo. BMB reports. 2013; Oct;46(10):484-9.
[66] WANG, Y.; WANG, J.; LI, J.; ZHANG, Y.; HUANG, W.; ZUO, J.; LIU, H.; XIE, D.; ZHU, P. Design,Synthesis and Pharmacological Evaluation of Novel Piperlongumine derivatives as Potential Antiplatelet Aggregation Candidate. Chem Biol Drug Des. 2016; Jun;87(6):833-40.
[67] YUAN, H.; HOUCK, K.L.; TIAN, Y.; BHARADWAJ, U.; HULL, K.; ZHOU, Z.; ZHU, M.; WU, X.; TWEARDY, D.J.; ROMO, D.; FU, X.; ZHANG, Y.; ZHANG, J.; DONG, J.F. Piperlongumine Blocks JAK2-STAT3 to Inhibit Collagen-Induced Platelet Reactivity Independent of Reactive Oxygen Species. PLoS One. 2015; Dec 8;10(12):e0143964. eCollection. Erratum in: PLoS One. 2016;11(1):e0146626. Zhou, Mingzhao [corrected to Zhu, Mingzhao].
[68] VIEIRA, G.; SILVA, M.T.A.D.; REGASINI, L.O.; COTINGUIBA, F.; LAURE, H.J.; ROSA, J.C.; FURLAN, M.; CICARELLI, R.M.B. Trypanosoma cruzi: analysis of two different strains after piplartine treatment. Braz J Infect Dis. 2018; May - Jun; 22(3):208-218.
[69] DAVENPORT, J.; BALCH, M.; GALAM, L.; GIRGIS, A.; HALL, J.; BLAGG, B.S.; MATTS, R.L. High-throughput screen of natural product libraries for hsp90 inhibitors. Biology (Basel). 2014; Feb 10;3(1):101-38.
[70] SRIVASTAVA, A.; KARTHICK, T.; JOSHI, B.D.; MISHRA, R.; TANDON, P.; AYALA, A.P.; ELLENA, J. Spectroscopic (far or terahertz, mid-infrared and Raman) investigation, thermal analysis and biological activity of piplartine. Spectrochimica Acta Part A. Molecular and Biomolecular Spectroscopy. 2017; 184, 368-381.
[71] BISSINGER, R.; MALIK, A.; WARSI, J.; JILANI, K.; LANG, F. Piperlongumine-induced phosphatidylserine translocation in the erythrocyte membrane. Toxins (Basel). 2014; Oct 14;6(10):2975-88.
[72] WANG, Y.; CHANG, J.; LIU, X.; ZHANG, X.; ZHANG, S.; ZHANG, X.; ZHOU, D.; ZHENG, G. Discovery of piperlongumine as a potential novel lead for the development of senolytic agents. Aging (Albany NY). 2016; Nov;8(11):2915-2926.
[73] LIU, X.; WANG, Y.; ZHANG, X.; GAO, Z.; ZHANG, S.; SHI, P.; ZHANG, X.; SONG, L.; HENDRICKSON, H.; ZHOU, D.; ZHENG, G. Senolytic activity of piperlongumine analogues: Synthesis and biological evaluation. Bioorg Med Chem. 2018; Aug 7;26(14):3925-3938.
[74] YADAV, V.; CHATTERJEE, S.S.; MAJEED, M.; KUMAR, V. Long lasting preventive effects of piperlongumine and a Piper longum extract against stress triggered pathologies in mice. Journal of intercultural ethnopharmacology. 2015; 4(4), 277.
[75] YADAV, V.; CHATTERJEE, S.S.; MAJEED, M.; KUMAR, V. Preventive potentials of piperlongumine and a Piper longum extract against stress responses and pain. Journal of traditional and complementary medicine. 2016; 6(4), 413-423.
[76] FREGNAN, A.M.; BRANCAGLION, G.A.; GALVÃO, A.F.; COSTA, C.O.; MOREIRA, D.R.; SOARES, M.B.; BEZERRA, D.P.; SILVA, N.C.; MORAIS, S.M.; OLIVER, J.C.; DIAS, A.L.; COELHO, L.F.; CARVALHO, D.T.; DIAS, D.F.; SOUZA, T.B. Synthesis of piplartine analogs and preliminary findings on structure–antimicrobial activity relationship. Medicinal Chemistry Research. 2016; 26, 603-614.
[77] BEZERRA, G.B.; ARAÚJO, J.M.; BELIAN, M.F.; DA SILVA, W.E.; RAMOS, C.S. A novel hybrid complex formed from the piplartine and vanadil ion: synthesis, characterization and biological activity study. Química Nova. 2018; v. 40, n. 9, 998-1002.
[78] RAPADO, L.N.; PINHEIRO, A.S.; LOPES, P.O.; FOKOUE, H.H.; SCOTTI, M.T.; MARQUES, J.V.; OHLWEILER, F.P.; BORRELY, S.I.; PEREIRA, C.A.; KATO, M.J.; NAKANO, E.; YAMAGUCHI, L.F. Schistosomiasis control using piplartine against Biomphalaria glabrata at different developmental stages. PLoS Negl Trop Dis. 2013; Jun 6;7(6):e2251.
[79] DE MORAES, J.; KEISER, J.; INGRAM, K.; NASCIMENTO, C.; YAMAGUCHI, L.F.; BITTENCOURT, C.R.; LEITE JR., M.P.B.; KATO, M.J.; NAKANO, E. In vitro synergistic interaction between amide piplartine and antimicrobial peptide dermaseptin against Schistosoma mansoni schistosomula and adult worms. Curr med chem. 2013; v. 20, n. 2. 301-309.
[80] CAMPELO, Y.D.M.; MAFUD, A.C.; VÉRAS, L.M.C.; GUIMARÃES, M.A.; YAMAGUCHI, L.F.; LIMA, D.F.; ARCANJO, D.D.R.; KATO, M.J.; MENDONÇA, R.Z.; PINTO, P.L.S.; MASCARENHAS, Y.P.; SILVA, M.P.N.; DE MORAES, J.; EATON, P.; DE SOUZA DE ALMEIDA LEITE, J.R. Synergistic effects of in vitro combinations of piplartine, epiisopiloturine and praziquantel against Schistosoma mansoni. Biomed Pharmacother. 2017; Apr;88:488-499.
[81] MALECK, M.; FERREIRA, B.; MALLET, J.; GUIMARÓES, A.; KATO, M. Cytotoxicity of piperamides towards Aedes aegypti (Diptera: Culicidae). Journal of medical entomology. 2014; 51(2), 458-463.
[82] MOREIRA F.L.; HABENSCHUS, M.D.; BARTH, T.; MARQUES, L.M.; PILON, A.C.; BOLZANI V.S.; VESSECCHI, R.; LOPES, N.P.; DE OLIVEIRA, A.R. Metabolic profile and safety of piperlongumine. Sci Rep. 2016; Sep 29;6:33646.
[83] MOREIRA, F.L.; RIUL, T.B.; MOREIRA, M.L.; PILON, A.C.; DIAS-BARUFFI, M.; ARAÚJO, M.S.S.; LOPES, N.P.; DE OLIVEIRA, A.R.M. Leishmanicidal Effects of Piperlongumine (Piplartine) and Its Putative Metabolites. Planta Med. 2018; Oct;84(15):1141-1148.
[84] ARAÚJO-VILGES, K.M.; OLIVEIRA, S.V.; COUTO, S.C.P.; FOKOUE, H.H.; ROMERO, G.A.S.; KATO, M.J.; ROMEIRO, L.A.S.; LEITE, J.R.S.A.; KUCKELHAUS, S.A.S. Effect of piplartine and cinnamides on Leishmania amazonensis, Plasmodium falciparum and on peritoneal cells of Swiss mice. Pharm Biol. 2017; Dec: 55(1):1601-1607.
[85] BODIWALA, H.S.; SINGH, G.; SINGH, R.; DEY, C.S.; SHARMA, S.S.; BHUTANI, K.K.; SINGH, I.P. Antileishmanial amides and lignans from Piper cubeba and Piper retrofractum.(Author abstract) (Report). Journal of Natural Medicines. 2007; Oct, Vol.61(4), p.418.
[86] CAPELLO, T.M.; MARTINS, E.G.; DE FARIAS, C.F.; FIGUEIREDO, C.R.; MATSUO, A.L.; PASSERO, L.F.; OLIVEIRA-SILVA, D.; SARTORELLI, P.; LAGO, J.H. Chemical composition and in vitro cytotoxic and antileishmanial activities of extract and essential oil from leaves of Piper cernuum. Nat Prod Commun. 2015; Feb;10(2):285-8.
[87] JIN, Z.H.; QIU, W.; LIU, H.; JIANG, X.H.; WANG, L. Enhancement of oral bioavailability and immune response of Ginsenoside Rh2 by co-administration with piperine. Chin J Nat Med. 2018; Feb;16(2):143-149.
[88] KIM, T.H.; SHIN, S.; YOO, S.D.; SHIN, B.S. Effects of Phytochemical P-Glycoprotein Modulators on the Pharmacokinetics and Tissue Distribution of Doxorubicin in Mice. Molecules. 2018; Feb 7;23(2). pii: E349.
[89] BHARATHI A.C.; SRINIVAS, S.; IBRAHIM B.S Exploring the binding mechanism and kinetics of Piperine with snake venom secretory Phospholipase A(2). J Biomol Struct Dyn. 2018; Jan;36(1):209-220. Epub 2017 Jan 6. PubMed PMID: 27960631.
[90] LI, H.; KRSTIN, S.; WANG, S.; WINK, M. Capsaicin and Piperine Can Overcome Multidrug Resistance in Cancer Cells to Doxorubicin. Molecules. 2018; Mar 2;23(3). pii: E557. PMID: 29498663.
[91] YUN, Y.S.; NODA, S.; TAKAHASHI, S.; TAKAHASHI, Y.; INOUE, H. Piperine-like alkamides from Piper nigrum induce BDNF promoter and promote neurite outgrowth in Neuro-2a cells. J Nat Med. 2017; Jan;72(1):238-245.
[92] CHAUHAN, P.S.; JAISWAL, A.; SUBHASHINI, S.R. Combination Therapy with Curcumin Alone Plus Piperine Ameliorates Ovalbumin-Induced Chronic Asthma in Mice. Inflammation. 2018; Oct;41(5):1922-1933. PubMed PMID: 29959624.
[93] SINGH, I.P.; JAIN, S.K.; KAUR, A.; SINGH, S.; KUMAR, R.; GARG, P.; SHARMA, S.S.; ARORA, S.K. Synthesis and antileishmanial activity of piperoyl-amino acid conjugates. Eur J Med Chem. 2010; Aug;45(8):3439-45.
[94] FERREIRA, C.; SOARES, D.C.; BARRETO-JUNIOR, C.B.; NASCIMENTO, M.T.; FREIRE-DE-LIMA, L; DELORENZI, J.C.; LIMA, M.E.; ATELLA, G.C.; FOLLY, E.; CARVALHO, T.M.; SARAIVA, E.M.; PINTO-DA-SILVA, L.H. Leishmanicidal effects of piperine, its derivatives, and analogues on Leishmania amazonensis. Phytochemistry. 2011; Dec;72(17):2155-64.
[95] VIEIRA-ARAÚJO, F.M.; RONDON, F.C.M; VIEIRA, Í.G.P.; MENDES, F.N.P.; FREITAS, J.C.C.; MORAIS S.M. Sinergism between alkaloids piperine and capsaicin with meglumine antimoniate against Leishmania infantum. Experimental Parasitology. 2018; 188, 79–82.
[96] KAPIL, A. Piperine: A Potent Inhibitor of Leishmania donovani Promastigotes in vitro. Planta Medica. 1993; 59(05), 474-474
[97] RAAY, B.; MEDDA, S.; MUKHOPADHYAY, S.; BASU, M.K. Targeting of piperine intercalated in mannose-coated liposomes in experimental leishmaniasis. Indian J Biochem Biophys. 1999; Aug; 36(4):248-51.
[98] VEERAREDDY, P.R.; VOBALABOINA, V.; NAHID, A. Formulation and evaluation of oil-in-water emulsions of piperine in visceral leishmaniasis. Die Pharmazie-An International Journal of Pharmaceutical Sciences. 2004; v. 59, n. 3, p. 194-197.
[99] MARTINELLI, A.; RODRIGUES, L.A.; CRAVO, P. Plasmodium chabaudi: efficacy of artemisinin+ curcumin combination treatment on a clone selected for artemisinin resistance in mice. Experimental parasitology. 2008; v. 119, n. 2, p. 304-307.
[100] NETO, Z.; MACHADO, M.; LINDEZA, A.; DO ROSÁRIO, V.; GAZARINI, M.L.; LOPES, D. Treatment of Plasmodium chabaudi Parasites with Curcumin in Combination with Antimalarial Drugs: Drug Interactions and Implications on the Ubiquitin/Proteasome System. J Parasitol Res. 2013; 429736.
[101] COS, P.; VLIETINCK, A.J.; BERGHE, D.V.; MAES, L. Anti-infective potential of natural products: how to develop a stronger in vitro 'proof-of-concept'. J. Ethnopharmacol. 2006 Jul 19;106(3):290-302.
Publicado
2020-01-24
Como Citar
Silva, M. A. da, DA SILVA, F. B., PASSARINI, G. M., FIALHO, S. N., DOS SANTOS, A. P. D. A., MARTINEZ, L. D. N., TELES, C. B. G., & KUEHN, C. C. (2020). PIPLARTINE AND PIPERINE: a review of their biological activities. South American Journal of Basic Education, Technical and Technological , 6(2), 818-858. Recuperado de https://periodicos.ufac.br/index.php/SAJEBTT/article/view/2774
Seção
Artigos de Revisão