MICRORNA-367 COMO BIOMARCADOR E ALVO TERAPÊUTICO EM TUMORES EMBRIONÁRIOS DO SISTEMA NERVOSO CENTRAL, COM ÊNFASE AO MEDULOBLASTOMA: UMA REVISÃO SISTEMÁTICA
Keywords:
microRNAs; Carcinogênese; Terapia gênica; Tumores embrionários do SNC.Abstract
MicroRNAs are non-coding single strange RNA molecules, however, they act under gene regulation whether controlling expression, repressing translation or inducing cleavage. Among the tumors that affect the pediatric patients, the more incidents are leukemias, lymphomas, and the embryonal central nervous systems (CNS) tumors, like medulloblastoma, the first cause of death in cancer patients between 0-4 years old can be mentioned. This article aims to analyze the benefits of using microRNA-367 (miR-367) as a therapeutic target in highly aggressive pediatric tumors, emphasizing medulloblastoma, thus reporting important aspects of its expression, in addition, its potential, as a biomarker for early diagnosis and prognosis. The methodology was based on a bibliographic search using scientific articles, indexed in PubMed. A total of 261 articles were found, with 43 being selected. The inclusion criteria were based on articles that describe the topic in question, published between the years 2015 to 2020, available in Portuguese or English. In this work, several types of tumors and their relationship with miR-367 can be mentioned, either overexpressed or down expressed and it's regulation in the tumor. The miR-367 is seen as a new biomarker and target of therapies, in several studies, its expression can assist in timely diagnosis, enabling an effective prognosis as well as monitoring of pathologies.
References
[1] MANASA, V. G.; KANNAN, S. Impacto of microRNA dynamics on câncer hallmarks: Na oral câncer scenario. Tumoral Biology. v. 39, n. 3, p.1-14, 2017. DOI: 10.1177/1010428317695920.
[2] EL-SAKKA, H,; KUJAN, O.; FARAH, C. S. Assessing miRNAs profile expression as a risk stratification biomarker in oral potentially malignant disorders: A systematic review. Oral Oncology. v. 77, p. 57-82, 2018. DOI: 10.1016/j.oraloncology.
[3] MAJIDINIA, M.; MIR, S. M.; MIRZA-AGHAZADEH-ATTARI, M.; ASGHARI, R.; KAFIL, H. S.; SAFA, A.; YOUSEFI, B. MicroRNAs, DNA damage response and ageing. Biogerontology, 2020. DOI:10.1007/s10522-020-09862-2.
[4] SANTOS, J. M. O.; GIL, DA COSTA; R. M.; MEDEIROS, R. Dysregulation of cellular microRNAs by human oncogenic viruses – Implications for tumorigenesis. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, v. 1861, n. 2, p. 95–105, 2018. DOI:10.1016/j.bbagrm.2018.01.017.
[5] OBIER, N.; LIN, Q.; CAUCHY, P.; HORNICH, V.; ZENKE, M.; BECKER, M.; M€ ULLER, A.M. Polycomb protein EED is required for silencing of pluripotency genes upon ESC differentiation. Stem Cell Ver. v. 11, p. 50–61, 2015. DOI: 10.1007/s12015-014-9550-z.
[6] KAID, C.; SILVA, P.B.G.; CORTEZ, B.A.; RODINI, C.O.; SEMEDOKURIKI, P.; OKAMOTO, O.K. miR-367 promotes proliferation and stem-like traits in medulloblastoma cells. Cancer Sci. v. 106, p. 1188–1195, 2015. DOI: 10.1111/cas.12733.
[7] MIRBASE. miRBase: the microRNA datebase, 2019. Disponível em: www.mirbase.org/cgi-bin/mirna_summary.pl?org=hsa. Acesso em: 09-12-2019.
[8] MIN, A.; ZHU, C.; PENG, S.; RAJTHALA, S.; COSTEA, D. E.; SAPKOTA, D. MicroRNAs as Important Players and Biomarkers in Oral Carcinogenesis. BioMed Research International, p. 1–10, 2015. DOI:10.1155/2015/186904.
[9] BOSCAINO, V.; FIANNACA, A.; LA PAGLIA, L.; LA ROSA, M.; RIZZO, R.; URSO, A. MiRNA therapeutics based on logic circuits of biological pathways. BMC Bioinformatics, v. 20, n. 9, 2019. DOI:10.1186/s12859-019-2881-7.
[10] BRASIL. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Atenção Especializada e Temáticas. Protocolo de diagnóstico precoce do câncer pediátrico [recurso eletrônico], Brasília: Ministério da Saúde, 2017.
[11] BRASIL. Instituto Nacional do Câncer – INCA. Ministério da Saúde alerta responsáveis e profissionais de saúde para o câncer em crianças, 2019. Disponível em: https://www.inca.gov.br/noticias/ministerio-da-saude-alerta-responsaveis-e-profissionais-de-saude-para-o-cancer-em-criancas. Acesso em:17/12/2019.
[12] FELICIANO, S. V. M.; SANTOS, M. de O.; POMBO-DE-OLIVEIRA, M. S. Incidência e Mortalidade por Câncer entre Crianças e Adolescentes: uma Revisão Narrativa. Rev. Brasileira.De.Cancerologia [Internet]. v. 64, n. 3, p. 389-96, 2018. DOI: https://doi.org/10.32635/2176-9745.RBC.2018v64n3.45.
[13] CANCER, M.; HUTTER, S.; HOLMBERG, K. O.; ROSÉN, G.; SUNDSTRÖM, A.; TAILOR, J.; SWARTLING, F. J. Humanized Stem Cell Models of Pediatric Medulloblastoma Reveal an Oct4/mTOR Axis that Promotes Malignancy. Cell Stem Cell, v. 25, p. 1-16, 2019. DOI:10.1016/j.stem.2019.10.005.
[14] LIU, X.; DING, C.; TAN, W.; ZHANG, A. Medulloblastoma: Molecular understanding, treatment evolution, and new developments. Pharmacology & Therapeutics, v. 20, p. 30044-9, 2020. DOI:10.1016/j.pharmthera.2020.107516.
[15] CHEN, P.S.; LIN, S.C.; TSAI, S.J. Complexity in regulating microRNA biogenesis in cancer. Experimental Biology and Medicine, p. 1-7, 2020. DOI:10.1177/1535370220907314.
[16] BASKARA-YHUELLOU, I.; TOST, J. The impact of microRNAs on alterations of gene regulatory networks in allergic diseases. Inflammatory Disorders - Part B, p. 237–312, 2020. DOI:10.1016/bs.apcsb.2019.11.006.
[17] DEVI, PANDIMA K.; RAJAVEL, T.; DAGLIA, M.; NABAVI, S. F.; BISHAYEE, A.; NABAVI, S. M. Targeting miRNAs by polyphenols: Novel therapeutic strategy for cancer. Seminars in Cancer Biology, v. 46, p. 146–157, 2017. DOI:10.1016/j.semcancer.2017.02.001.
[18] DONG, H.; LEI, J.; DING, L.; WEN, Y.; JU, H.; ZHANG, X. MicroRNA: função, detecção e bioanálise. Chem Rev. v. 113, p. 6207-6233, 2013.
[19] MOULATLET, A. C. B. MicroRNAs como biomarcadores no carcinoma papiliférode tireoide: Associacão com mutações somáticas frequentes e significado biológico. [Dissertação (Mestrado em biotecnologia)]. São Paulo: Instituto de Ciências Biomédica, Universidade de São Paulo; 2013.
[20] HAYES, J.; PERUZZI, P. P.; LAWLER, S.; MicroRNAs in câncer: biomarkers, functions and therapy. Trends Mol Med. v. 20, n. 8, p. 460-469, 2014. DOI: 10.1016/j.molmed.2014.06.005.
[21] WANG, Z.; LUO, Y. O MicroRNA-367 promove a progressão do carcinoma hepatocelular através da via de sinalização PTEN / PI3K / AKT. Biosci Rep. Sep 20, 2019. DOI: 10.1042 / BSR20182466.
[22] KAID, C. Expressão de hsa-miR-367 e agressividade meduloblastoma humano. Dissertação (Mestrado). Instituto de Biociências da Universidade de São Paulo: Departamento de Genética e Biologia Evolutiva, 2014.
[23] PUI, C. H.; GAJJAR, A. J.; KANE, J. R.; QADDOUMI, I. A.; PAPPO, A. S. Challenging issues in pediatric oncology. Nature Reviews Clinical Oncology, v. 8, n. 9, p. 540–549, 2011. DOI:10.1038/nrclinonc.2011.95.
[24] CLEBIS, V. H ET AL. Meduloblastoma: aspectos histológicos, moleculares e imunopatológicos. Ciências Biológicas e da Saúde, Londrina, v. 36, n. 1, p. 117-128, 2015. DOI: 10.5433/1679-0367.201v36n1p117.
[25] HAUG, B. H. Exosome-like Extracellular Vesicles from MYCN-amplified Neuroblastoma Cells Contain Oncogenic miRNAs. Anticancer Res. v. 35, p. 2521–2530, 2015.
[26] BATLLE, E., & CLEVERS, H. Cancer stem cells revisited. Nature Medicine, v. 23, n. 10, p.1124–1134, 2017 . DOI:10.1038/nm.4409.
[27]GARCIA S.; FERNÁNDEZ C. Biologia humana. Embriologia. 3° ed. Porto Alegre: Artemed, 2012.
[28] PINHO, M.S.L. Célula tronco tumoral: novo conceito em carcinogênese colorretal. Rev bras. colo-proctol. v. 29, n. 1, 2009. DOI: https://doi.org/10.1590/S0101-98802009000100018.
[29] BATLLE, E.; CLEVERS, H. Cancer stem cells revisited. Revista Nature Medicine, v.23, n. 10, p.1124-1134, 2017. DOI: 10.1038/nm.4409.
[30] DA SILVA, P. B. G.; SANTOS, M. C. T.; RODINI, C. O.; KAID, C.; PEREIRA, M. C. L.; FURUKAWA, G.; CRUZ, D. S. G.; GOLFFEDER, M. B.; ROCHA, C. R. R.; ROSENBERG, C.; OKAMOTO, O. K. High OCT4 levels drive tumorigenicity and metastatic potential of medulloblastoma cells. Oncotarget, v. 8, n. 12, p. 19192-19204, 2017. DOI: 10.18632/oncotarget.15163.
[31] KAID. C. Identificação de biomarcadores e avaliação pré-clínica de novas terapias para tumores embrionários do sistema nervoso central: miR-367 como alvo terapêutico e efeito oncológico do vírus ZIKA. Tese (Doutorado). Instituto de Biociências da Universidade de São Paulo: Departamento de Genética e Biologia Evolutiva, 2018.
[32] KAID. C. miR-367 as a therapeutic target in stem-like cells from embryonal central nervous system tumors. Molecular Oncology. v. 13, n. 12, p. 2574–2587, 2019. DOI: 10.1002/1878-0261.12562
[33] LIU, J.; Wang, Y.; Ji, P.; Jin, X. The application of the miR‐302/367 cluster in cancer therapy. Cancer Science, p. 1-11, 2020. DOI:10.1111/cas.14317.
[34] ZHU, Z.; XU, Y.; ZHAO, J.; LIU, Q.; FENG, W.; FAN, J.; WANG, P. miR-367 promotes epithelial-to-mesenchymal transition and invasion of pancreatic ductal adenocarcinoma cells by targeting the Smad7-TGF-β signalling pathway. British Journal of Cancer, v. 112, n. 8, p. 1367–1375, 2015. DOI:10.1038/bjc.2015.102
[35] SUN, J.; SONG, K.; FENG, X.; GAO, S. MicroRNA-367 is a potential diagnostic biomarker for patients with esophageal squamous cell carcinoma. Biochemical and Biophysical Research Communications, v. 473, n. 2, p. 363–369, 2016. DOI:10.1016/j.bbrc.2016.01.042.
[36] CAI, W.; JIANG, H.; YU, Y.; XU, Y.; ZUO, W.; WANG, S.; SU, Z. miR -367 regulation of DOC-2/DAB2 interactive protein promotes proliferation, migration and invasion of osteosarcoma cells. Biomedicine & Pharmacotherapy, v. 95, p. 120–128, 2017. DOI:10.1016/j.biopha.2017.07.158.
[37] GUO, Y.; CUI, J.; JI, Z.; CHENG, C.; ZHANG, K.; ZHANG, C.; ZHU, H. H. miR-302/367/LATS2/YAP pathway is essential for prostate tumor-propagating cells and promotes the development of castration resistance. Oncogene, v. 36, n. 45, p. 6336–6347, 2017. DOI:10.1038/onc.2017.240.
[38] LIU, X.; ZHENG, J.; XUE, Y.; YU, H.; GONG, W.; WANG, P.; LIU, Y. PIWIL3/OIP5-AS1/miR-367-3p/CEBPA feedback loop regulates the biological behavior of glioma cells. Theranostics, v. 8, n. 4, p. 1084–1105, 2018. DOI:10.7150/thno.21740.
[39] LONG, J.; LUO, J.; YIN, X. miR 367 enhances the proliferation and invasion of cutaneous malignant melanoma by regulating phosphatase and tensin homolog expression. Molecular Medicine Reports, v. 17, p. 6526-6532, 2018. DOI:10.3892/mmr.2018.8663.
[40] RAMEZANKHANI, B.; TAHA, M. F.; JAVERI, A. Vitamin C counteracts miR-302/367-induced reprogramming of human breast cancer cells and restores their invasive and proliferative capacity. Journal of Cellular Physiology, p. 1-11, 2018. DOI:10.1002/jcp.27081.
[41] YANG, T.; TIAN, S.; WANG, L.; WANG, Y.; ZHAO, J. MicroRNA‐367‐3p overexpression represses the proliferation and invasion of cervical cancer cells through downregulation of SPAG5‐mediated Wnt/β‐catenin signaling. Clinical and Experimental Pharmacology and Physiology, v. 47, n. 4, p. 687-695, 2019. DOI:10.1111/1440-1681.13222.
[42] QIN, G.; MALLIK, S.; MITRA, R.; LI, A.; JIA, P.; EISCHEN, C. M.; ZHAO, Z. MicroRNA and transcription factor co-regulatory networks and subtype classification of seminoma and non-seminoma in testicular germ cell tumors. Scientific Reports, v. 10, n. 1, 2020. DOI:10.1038/s41598-020-57834-w.
[43] TAO, Y.; WAN, X.; FAN, Q.; WANG, Y.; SUN, H.; MA, L.; WU, Y. Long non-coding RNA OIP5-AS1 promotes the growth of gastric cancer through the miR-367-3p/HMGA2 axis. Digestive and Liver Disease, 2020. DOI:10.1016/j.dld.2019.11.017.