Fire Impacts on the Plant Individual Level and Future Directions of Fire Ecology in the Amazon Rainforest

Authors

  • Marcus Vinicius Athaydes Liesenfeld Universidade Federa do Acre

Keywords:

Arecaceae, natural regeneration, surface-fires, cambial-death, forest fires, hydraulic-death

Abstract

In the present days Amazon rainforest reveal no more natural protections against fire. Although fire always acted in vegetation structuring, even though independent of human existence, nowadays fire regimes are changing worldwide, as in the Amazon, motivated by global climate change and climate anomalies. Forest fires impact vegetation differently, depending on the ecosystem, soil type, and plants’ features. Many species can respond positively, with survival mechanisms. Here will be presented data examples on palm species (Arecaceae) in individual level, considering fire can act positively and negatively over the species family. By including questions and presenting knowledge gaps, we intend to suggest news research asks. A better understanding of how Amazon plants respond to fire impact is necessary, to recognize if Amazon is actually still moist forest fire-immune, and how this contributes to species resilience on altered environments.

References

[1] Peres CA. Ground fires as agents of mortality in a Central Amazonian forest. Journal of Tropical Ecology. 1999; 15(4):535-541. DOI: 10.1017/s0266467499000991
[2] Barlow J, et al. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters. 2002; 6(1):6-8. DOI: 10.1046/j.1461-0248.2003.00394.x
[3] Pausas JG, Moreira B. Flammability as a biological concept. New Phytologist. 2012; 194:610-613. DOI: 10.1111/j.1469-8137.2012.04132.x
[4] Laurance WF, et al. The fate of Amazonian forest fragments?: A 32-year investigation. Biological Conservation. 2011; 144(1):56-67. DOI: 10.1016/j.biocon.2010.09.021
[5] Nepstad D, et al. Large-scale impoverishment of Amazonian forests by logging and fire. Nature. 1999; 1405(1997):1997-2000. DOI:10.1038/19066
[6] Laurance WF. Positive Feedbacks among Forest Fragmentation, Drought, and Climate Change in the Amazon. Conservation Biology. 2001; 4(6):1538-1535. DOI: 10.1046/j.1523-1739.2001.01093.x
[7] Longo M, Knox R, et al. Ecosystem heterogeneity and diversity mitigate Amazon forest resilience to frequent extreme droughts. 2018; 219(3):914:931. DOI: 10.1111/nph.15185
[8] Phillips OL, et al. Resilience of southwestern Amazon forests to anthropogenic edge effects. Conservation biology. 2006; 20(6):1698-1710. DOI: 10.1111/j.1523-1739.2006.00523.x
[9] Cochrane MA, Laurance WFW. Fire as a large-scale edge effect in Amazonian forests. Journal of Tropical Ecology. 2002; 1(03):311-325. DOI: 10.1017/s0266467402002237
[10] Fearnside PM. Tropical Deforestation and Global Warming. Science. 2006; 312(5777):1137c-1137c. DOI: 10.1126/science.312.5777.1137c
[11] Fearnside PM. Brazil's evolving proposal to control deforestation: Amazon still at risk. Environmental Conservation. 2009. 36(03):177. DOI: 10.1017/s0376892909990294
[12] Mics F, et al. Rainforests at the beginning of the 21st century. Applied Ecology and Environmental Research. 2013; 11(1):1-20. DOI: 10.15666/aeer/1101_001020
[13] Hufnagel L, Garamvölgyi Á. Impacts of climate change on vegetation distribution No. 2-climate change induced vegetation shifts in the new world. Applied Ecology and Environmental Research. 2014; 12(2):355-422. DOI: 10.15666/aeer/1202_355422
[14] Silva SS, et al. Dynamics of forest fires in the southwestern Amazon. Forest Ecology and Management. 2018; 424(15):312:322. DOI: 10.1016/j.foreco.2018.04.041
[15] Armenteras D, et al. Integrating remotely sensed fires for predicting deforestation for REDD+. Ecological Applications. 2017; 27(4):1294-1304. DOI: 10.1002/eap.1522
[16] Maçaneiro JP, et al. Few dominant native woody species: How subtropical rainforest successional process acts on abandoned pastures in southern Brazil. Applied Ecology and Environmental Research. 2017; 15(4):1633-1676. DOI: 10.15666/aeer/1504_16331676
[17] Liesenfeld MVA, Vieira G. Postfire Palm Resprouting in the Amazonian Forest: are Underground Stems an Advantage? Perspectivas Rurales. 2018; 16(31):11-23. DOI: 10.15359/prne.16-31.1
[18] Montúfar R, et al. Disturbance and resilience in tropical American palm populations and communities. The Botanical Review. 2011; 77(4):426-461. DOI: 10.1007/s12229-011-9085-9
[19] Mcpherson K, Williams K. Fire resistance of cabbage palms (Sabal palmetto) in the southeastern USA. Forest Ecology and Management. 1998; 109(1-3):197-207. DOI: 10.1016/S0378-1127(98)00243-6
[20] Wuschke M. Fire Resistance in a Queensland Livistona. Palms (Principes). 1999. 43(3): 140-144.
[21] Brown JK, Smith JK. Wildland fire in ecosystems: effects of fire on flora. General Technical Report v2. USDA, United States Department of Agriculture. 2000. DOI: 10.2737/rmrs-gtr-42-v2
[22] Bond WJ, Keeley JE. Fire as a global "herbivore": the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution. 2005; 20(7):387-394. DOI: 10.1016/j.tree.2005.04.025
[23] Bowman D, et al. Fire in the Earth system. Science. 2009; 324(5926):481-484. DOI: 10.1126/science.1163886 .
[24] Cochrane MA, Barber CP. Climate change, human land use and future fires in the Amazon. Global Change Biology. 2009; 15(3):601-612. DOI: 10.1111/j.1365-2486.2008.01786.x
[25] Dransfield J, Rakotoarinivo M. The biogeography of Madagascar palms. The Biology of Island Floras, 179. 2011. DOI: 10.1017/cbo9780511844270.008
[26] Abrahamson WG, Abrahamson CR. Post-fire canopy recovery in two fire-adapted palms, Serenoa repens and Sabal etonia (Arecaceae). Florida Scientist. 2006; 69(2):69-79. jstor.org/stable/24322340
[27] McPherson K, Williams K. Fire resistance of cabbage palms (Sabal palmetto) in the southeastern USA. Forest Ecology and Management. 1998; 109(1-3):197-207. DOI: 10.1016/s0378-1127(98)00243-6
[28] Lewis JP, et al. Woody vegetation structure and composition of the last relicts of Espinal vegetation in subtropical Argentina. Biodiversity and conservation. 2009; 18(13):3615. DOI: 10.1007/s10531-009-9665-8
[29] Loiola PDP, et al. Functional diversity of herbaceous species under different fire frequencies in Brazilian savannas. Flora -Morphology, Distribution, Functional Ecology of Plants. 2010; 205(10):674–681. DOI: 10.1016/j.flora.2010.04.006
[30] Silva IA, Batalha MA. Woody plant species co-occurrence in Brazilian savannas under different fire frequencies. Acta Oecologica. 2010; 36(1):85–91. DOI: 10.1016/j.actao.2009.10.004
[31] Miola D, et al. Efeito do fogo na fenologia de Syagrus glaucescens Glaz. ex Becc. (Arecaceae). Neotropical Biology and Conservation. 2010; 5(3):146–153. DOI: 10.4013/nbc.2010.53.02
[32] Rocha AESD, Silva MFFD. Phytosociological, floristic, and ethnobotanical aspects of the palms (Arecaceae) in a secondary forest in the Municipality of Bragança, Pará State, Brazil. Acta Botanica Brasilica. 2005; 19(3):657-667. DOI: 10.1590/S0102-33062005000300028
[33] Barot S, et al. Reproductive plasticity in an Amazonian palm. Evolutionary Ecology Research. 2005; 7:1051–1065. WOS:000233367300007
[34] Arrúa RD, Negrelle RRB. Estructura poblacional, regeneración y producción potencial de cera de Copernicia alba Morong ex Morong & Britton en tres sitios de la región del Chaco, Paraguay. Iheringia. Série Botânica. 2014; 69(2):277-284. DOI: 10.21826/2446-8231
[35] Miranda IPA.; Rabelo A. Guia das palmeiras de Porto Trombetas/PA. Instituto Nacional de Pesquisas da Amazônia. Editora da Universidade Federal do Amazonas, Manaus. 365p. 2008. ISBN: 978-85-7401-299-5
[36] Menezes LFTD, Araujo DSDD. Regeneração e riqueza da formação arbustiva de Palmae em uma cronoseqüência pós-fogo na restinga da Marambaia, Rio de Janeiro, RJ, Brasil. Acta Botanica Brasilica. 2004; 18(4):771-780. DOI:10.1590/s0102-33062004000400007
[37] Souza AF, Martins FR. Population structure and dynamics of a neotropical palm in fire-impacted fragments of the Brazilian Atlantic Forest. Biodiversity & Conservation. 2004; 13(9):1611-1632. DOI:10.1023/b:bioc.0000029326.44647.7f
[38] Almeida LB, Galetti M. Seed dispersal and spatial distribution of Attalea geraensis (Arecaceae) in two remnants of Cerrado in Southeastern Brazil. Acta Oecologica. 2007; 32(2):180-187. DOI:10.1016/j.actao.2007.04.001
[39] Charles-Dominique P. Colonization front of the understorey palm Astrocaryum sciophilum in a pristine rain forest of French Guiana. Global Ecology and Biogeography. 2003; 10(3):109–248. DOI:10.1046/j.1466-822x.2003.00020.x
[40] Arneaud LL, et al. Marked reproductive plasticity in response to contrasting fire regimes in a neotropical palm. Tropical Ecology. 2017; 58(4):693-703.
[41] Dowe J. Australian palms: biogeography, ecology and systematics. Csiro Publishing. 2010. 292pp. DOI:10.5860/choice.48-2666
[42] Rodd A. Revision of Livistona (Arecaceae) in Australia. Telopea. 1998; 8(1):49–153. DOI:10.7751/telopea19982015
[43] Baeza MJ, et al. Human disturbance and environmental factors as drivers of long‐term post‐fire regeneration patterns in Mediterranean forests. Journal of Vegetation Science. 2007;18(2):243-252. DOI: 10.1111/j.1654-1103.2007.tb02535.x
[44] Knelman JE, et al. Rapid shifts in soil nutrients and decomposition enzyme activity in early succession following forest fire. Forests. 2017; 8(9):347. DOI: 10.3390/f8090347
[45] Bowman DMJS, et al. The human dimension of fire regimes on Earth. Journal of Biogeography. 2011; 38:2223-2236, 2011. DOI: 10.1111/j.1365-2699.2011.02595.x
[46] Bond WJ, Midgley JJ. Fire and the Angiosperm Revolutions. International Journal. 2012; 173(6):569- 58. DOI: 10.1086/665819
[47] Bedia J, et al. Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agricultural and Forest Meteorology. 2015. 214:369-379. DOI:10.1016/j.agrformet.2015.09.002
[48] Andela N, Morton DC, et al. A human-driven decline in global burned area. Science. 2017; 356(6345):1356-1362. DOI: 10.1126/science.aal4108
[49] Chuvieco E, et al. Global characterization of fire activity: toward defining fire regimes from Earth observation data. Global Change Biology. 2008; 14(7):1488-1502. DOI: 10.1111/j.1365-2486.2008.01585.x
[50] Krawchuk MA, et al. Global Pyrogeography: the Current and Future Distribution of Wildfire. PloS one. 2009; 4(4):1-12. DOI: 10.1371/journal.pone.0005102
[51] Bond WJ, et al. The global distribution of ecosystems in a world without fire. New Phytologist. 2005; 165:525-538. DOI: 10.1111/j.1469-8137.2004.01252.x
[52] Walter H. Vegetação e zonas climáticas. EPU, São Paulo. 325pp. 1986.
[53] Pausas JG, Keeley JE. A Burning Story: The Role of Fire in the History of Life. BioScience. 2009; 59(7):593-601. DOI: 10.1525/bio.2009.59.7.10
[54] Uhl C, et al. Fire in the Venezuelan Amazon 2: Environmental conditions Fire in the Venezuelan necessary for forest fires in the evergreen rainforest of Venezuela. Oikos. 1988; 53(2):176-184. DOI: 10.2307/3566060
[55] Govender N, et al. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. Journal of Applied Ecology. 2006; 43(4):748-758. DOI: 10.1111/j.1365-2664.2006.01184.x
[56] Balch JK, et al. The susceptibility of Southeastern Amazon Forests to Fire: Insights from a Large-Scale Burn Experiment. Bioscience. 2015; 65:893-905. DOI: 10.1093/biosci/biv106
[57] Bradstock RA. A biogeographic model of fire regimes in Australia: current and future implications. Global Ecology and Biogeography. 2010; 19(2):145-158. DOI: 10.1111/j.1466-8238.2009.00512.x .
[58] Flannigan MD. Implications of changing climate for global wildland fire. International Journal of Wildland Fire. 2009; 6(5):13. DOI: 10.1071/wf08187
[59] Doerr SH, Shakesby RA. Fire and the Land Surface. In: Belcher, C. M. (Ed.). Fire Phenomena and the Earth System: An Interdisciplinary Guide to Fire Science. 2013. John Wiley & Sons. 350 p. DOI: 10.1002/9781118529539.ch8
[60] Liu Y, et al. Wildland fire emissions, carbon, and climate: Wildfire - climate interactions. Forest Ecology and Management. 2014; 317(1):80-96. DOI: 10.1016/j.foreco.2013.02.020
[61] Page YLE, Morton D, et al. Synergy between land use and climate change increases future risk in Amazon forests. Earth System Dynamics. 2017. DOI: 10.5194/esd-2017-55.
[62] Gill M, Allan G. Large fires, fire effects and the fire-regime concept. International Journal Of Wildland Fire. 2008; 17:688-695. DOI: 10.1071/wf07145
[63] Armstrong G, Phillips B. Fire History from Life-History: Determining the Fire Regime that a Plant Community Is Adapted Using Life- Histories. PloS one. 2012; 7(2):1-8. DOI: 10.1371/journal.pone.0031544
[64] Brodie J, et al. Climate change and tropical biodiversity: a new focus. Trends in Ecology & Evolution. 2012; 27(3):145-150. DOI: 10.1016/j.tree.2011.09.008 .
[65] Coe MT, et al. Deforestation and climate feedbacks threaten the ecological integrity of south-southeastern Amazonia. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences. 2013; 368(1619):20120155. DOI: 10.1098/rstb.2012.0155
[66] De Faria BL, et al. Current and future patterns of fire-induced forest degradation in Amazonia. Environmental Research Letters. 2017; 12(9):095005. DOI: 10.1088/1748-9326/aa69ce
[67] Conedera M, et al. Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Science Reviews. 2009; 28(5-6):555-576. DOI: 10.1016/j.quascirev.2008.11.005
[68] Pellegrini AFA, et al. Shifts in functional traits elevate risk of fire?driven tree dieback in tropical savanna and forest biomes. Global change biology. 2016; 22(3):1235-1243. DOI: 10.1111/gcb.13110
[69] Davies GM, Legg CJ. Fuel Moisture Thresholds in the Flammability of Calluna vulgaris. Fire Technology. 2011. 47(2):421-436. DOI: 10.1007/s10694-010-0162-0
[70] Gutiérrez-Vélez VH, et al. Land cover change interacts with drought severity to change fire regimes in Western Amazonia. Ecological Applications. 2014; 24(6):1323-1340. DOI: 10.1890/13-2101.1
[71] Williams RJ, et al. Fire Behaviour. In: Ecological Studies. DOI: 10.1007/0-387-21515-8_3
[72] Pausas JG, et al. Secondary compounds enhance flammability in a Mediterranean plant. Oecologia. 2016. 180(1):103-110. DOI: 10.1007/s00442-015-3454-8
[73] Keeley JE. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire. 2009; 18(1):116. DOI: 10.1071/wf07049
[74] Alexander ME. Calculating and interpreting forest fire intensities. Canadian Journal of Botany. 1982; 60(4):349-357. DOI: 10.1139/b82-048
[75] Costa JJ, et al. On the Temperature Distribution Inside a Tree Under Fire Conditions. International Journal Of Wildland Fire. 1991; 1(2):87-96, 1991. DOI: 10.1071/wf9910087
[76] Simard S. Fire Severity, Changing Scales, and How Things Hang Together. International Journal of Wildland Fire. 1991; 1(1):1-23, 1991. DOI: 10.1071/wf9910023
[77] Bond WJ, Van Wilgen BW. Fire and Plants. Chapman & Hall, London. 1996. DOI: 10.1007/978-94-009-1499-5
[78] Michaletz S, Johnson E. How forest fires kill trees: A review of the fundamental biophysical processes. Scandinavian Journal of Forest Research. 2007; 22(6):500-515. DOI: 10.1080/02827580701803544
[79] Rein G, et al. The severity of smouldering peat fires and damage to the forest soil. Catena. 2008; 74(3):304-309. DOI: 10.1016/j.catena.2008.05.008
[80] Cochrane MA. Fire science for rainforests. Nature. 2003. 421:913-919. DOI: 10.1038/nature01437
[81] Poulos HM, et al. Human influences on fire regimes and forest structure in the Chihuahuan Desert Borderlands. Forest Ecology and Management. 2013; 298:1-11. DOI: 10.1016/j.foreco.2013.02.014
[82] Pausas JG, Ribeiro E. The global fire-productivity relationship. Global Ecology and Biogeography. 2013. 22(6):728-736. DOI: 10.1111/geb.12043
[83] Rundel PW. Fire as an Ecological Factor. In: Lange OL (Ed). Physiological Plant Ecology I. Springer, Berlin. 1981. DOI: 10.1007/978-3-642-68090-8_17
[84] Keeley JE, et al. Fire as an evolutionary pressure shaping plant traits. Trends in plant Science. 2011; 16(8):406-411. DOI: 10.1016/j.tplants.2011.04.002
[85] Pausas JG. Evolutionary fire ecology: lessons learned from pines. Trends in Plant Science. 2015; 20(5):318-324, 2015. DOI: 10.1016/j.tplants.2015.03.001
[86] Barlow J, et al. Morphological correlates of fire-induced tree mortality in a central Amazonian forest. Journal of Tropical Ecology. 2003;19(3):291-299. DOI: 10.1017/s0266467403003328
[87] Michaletz ST, et al. Moving beyond the cambium necrosis hypothesis of post-fire tree mortality: cavitation and deformation of xylem in forest fires. New Phytologist. 2012; 194(1):254-263. DOI: 10.1111/j.1469-8137.2011.04021.x
[88] Balch JK, et al. Effects of high-frequency understorey fires on woody plant regeneration in southeastern Amazonian forests. Philosophical Transactions of the Royal Society B: Biological Sciences. 2013; 368(1619):20120157-20120157. DOI: 10.1098/rstb.2012.0157
[89] Massman WJ, et al. Advancing investigation and physical modeling of first-order fire effects on soils. Fire Ecology. 2010; 6(1):36-54. DOI: 10.4996/fireecology.0601036
[90] Certini G. Effects of fire on properties of forest soils: a review. Oecologia. 2005; 143(1):1-10. DOI: 10.1007/s00442-004-1788-8
[91] Michaletz ST, Johnson EA. A biophysical process model of tree mortality in surface fires. Canadian Journal of Forest Research. 2008; 38(7):2013-2029. DOI: 10.1139/x08-024
[92] Debano L. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology. 2000; 231-232:195-206. DOI: 10.1016/s0022-1694(00)00194-3
[93] Yaussy DA, et al. Prescribed surface-fire tree mortality in Southern Ohio: equations based on thermocouple probe temperatures. In: Proc. of the 14th Central Hardwoods Forest Conf. 2004; 740:67-75. DOI: 10.2737/ne-gtr-316
[94] Safford HD, et al. Effects of fuel treatments on fire severity in an area of wildland - urban interface, Angora Fire, Lake Tahoe Basin, California. Forest Ecology and Management. 2009. 285(5):773-787. DOI: 10.1126/science.227.4682.53
[95] Smith AMS, et al. Towards a new paradigm in fire severity research using dose-response experiments. International Journal of Wildland Fire. 2016; 25(2):158-166. DOI: 10.1071/WF15130
[96] Uhl C, Kauffman JB. Deforestation, Fire Susceptibility, and Potential Tree Responses to Fire in the Eastern Amazon. Ecology. 1990; 71(2):437-449. DOI: 10.2307/1940299
[97] Carvalho Jr J, et al. Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire. International Journal of Wildland Fire. 2010; 19(6):795-799. DOI: 10.1071/wf08047
[98] Carvalho Jr J, et al. A tropical rainforest clearing experiment by biomass burning in the Manaus region. Atmospheric Environment. 1995; 29(17):2301-2309. DOI: 10.1016/1352-2310(95)00094-f
[99] Oliveira MVN, et al. Forest natural regeneration and biomass production after slash and burn in a seasonally dry forest in the Southern Brazilian Amazon. Forest Ecology and Management. 2011;261(9):1490-1498. DOI: 10.1016/j.foreco.2011.01.014
[100] Barlow J, et al. Wildfires in Bamboo-Dominated Amazonian Forest: Impacts on Above-Ground Biomass and Biodiversity. PloSone. 2012; 7(3):e33373. DOI: 10.1371/journal.pone.0033373
[101] Bond WJ, Scott AC. Fire and the spread of flowering plants in the Cretaceous. New Phytologist. 2010; 188:1137-1150. DOI: 10.1111/j.1469-8137.2010.03418.x
[102] Oliveras I, et al. Many shades of green: the dynamic tropical forest-savannah transition zones. Phil. Trans. R. Soc. B. 2016; 371(1703):20150308. DOI: 10.1098/rstb.2015.0308
[103] Parisien MA, et al. Scale-dependent controls on the area burned in the boreal forest of Canada, 1980-2005. Ecological Applications. 2011; 21(3):789-805. DOI: 10.1890/10-0326.1
[104] Hirota M, et al. Global Resilience of Tropical Forest and Savanna to Critical Transitions. Science. 2011; 334:232-234, 2011. DOI:10.1126/science.1210657
[105] Ray D, et al. Micrometeorological and Canopy Controls of Fire Susceptibility in a Forested Amazon Landscape. Ecological Applications. 2005; 15(5):1664-1678. DOI:10.1890/05-0404
[106] Fonseca MG, et al. Modelling fire probability in the Brazilian Amazon using the maximum entropy method. International Journal of Wildland Fire. 2016; 25(9):955-969. DOI: 10.1071/wf15216
[107] Reis SM, et al. Climate and fragmentation affect forest structure at the southern border of Amazonia. Plant Ecology & Diversity. 2018; 1-11. DOI: 10.1080/17550874.2018.1455230
[108] Alencar AAC, et al. Modeling forest understory fires in an eastern Amazonian landscape. Ecological Applications. 2004; 14(4):139-149. DOI: 10.1890/01-6029.
[109] Alencar AAC, et al. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: area burned and committed carbon emissions. Earth Interactions. 2006; 10(6): DOI: 10.1175/EI150.1.
[110] Vasconcelos SS, et al. Forest fires in southwestern Brazilian Amazonia: Estimates of area and potential carbon emissions. Forest Ecology and Management. 2013; 291:199-208. DOI: 10.1016/j.foreco.2012.11.044
[111] Morton DC, et al. Understorey fire frequency and the fate of burned forests in southern Amazonia. Philosophical transactions of the Royal Society of London. Series B, Biol. Sci. 2013; 368(1619):20120163. DOI: 10.1098/rstb.2012.0163
[112] Meggers BJ. Archeological Evidence for the Impact of Mega-Niño Events on Amazonia During the past two millenia. Climate Change. 1994; 28:321-338. DOI: 10.1007/bf01104077
[113] Holdsworth AR, Uhl C. Fire in Amazonian selectively logged rain forest and the potential for fire reduction. Ecological Applications. 1997; 7(2):713-725. DOI: 10.2307/2269533
[114] Aragão LOEC, Shimabukuro YO. The incidence of fire in Amazonian Forests with implications for REDD. Science. 2010; 328(4):1275-1278. DOI: 10.1126/science.1186925.
[115] Nogueira JMP, et al. Spatial pattern of the seasonal drought/burned area relationship across Brazilian biomes: Sensitivity to drought metrics and global remote-sensing fire products. Climate. 2017;5(2):42. DOI:10.3390/cli5020042
[116] Cochrane M, et al. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science. 1999; 284(5421):1832-1835. DOI:10.1126/science.284.5421.1832
[117] Hoffmann WA. Regional feedbacks among fire, climate, and tropical deforestation. Journal of Geophysical Research. 2003;108(23):1-11. DOI: 10.1029/2003jd003494
[118] Malhi Y, et al. Exploring the likelihood and mechanism of a climate-change-induced dieback of the Amazon rainforest. P Natl Acad Sci Usa. 2009; 106: 20610-20615. DOI: 10.1073/pnas.0804619106
[119] Silvestrini RA, et al. Simulating fire regimes in the Amazon in response to climate change and deforestation. Ecological Applications. 2011; 21(5):1573-1590. DOI: 10.1890/10-0827.1
[120] Kinnaird MF, O'brien TG. Ecological effects of wildfire on lowland rainforest in Sumatra. Conservation Biology. 1998; 12(5):954-956. DOI: 10.1046/j.1523-1739.1998.012005954.x
[121] Gerwing JJ. Degradation of forests through logging and fire in the eastern Brazilian Amazon. Forest ecology and management. 2002; 157(1):131-141. DOI: 10.1016/s0378-1127(00)00644-7
[122] Armenteras D, et al. Forest fragmentation and edge influence on fire occurrence and intensity under different management types in Amazon forests. Biological Conservation. 2013; 159:73-79. DOI: 10.1016/j.biocon.2012.10.026
[123] Adams MA. Mega-fires, tipping points and ecosystem services: managing forests and woodlands in an uncertain future. Forest Ecology and Management. 2013; 294:250-261. DOI: 10.1016/j.foreco.2012.11.039.
[124] Sampaio G, et al. Assessing the Possible Impacts of a 4°C or Higher Warming in Amazonia. In: Nobre C., Marengo J., Soares W. (eds) Climate Change Risks in Brazil. Spring., Cham. 2018. DOI:10.1007/978-3-319-92881-4_8
[125] Veldman JW. Clarifying the confusion: old-growth savannahs and tropical ecosystem degradation. Philosophical Transactions of the Royal Society B. 2016; 371(17013). DOI: 10.1098/rstb.2015.0306
[126] Krawchuk MA, Moritz MA. Constraints on global fire activity vary across a resource gradient. Ecology. 2011; 92(1):121-132. DOI: 10.1890/09-1843.1
[127] Da Silva APG. Recurrent wildfires drive rapid taxonomic homogenization of seasonally flooded Neotropical forests. Environmental Conservation. 2018; 1-9. DOI: 10.1017/s0376892918000127
[128] Chazdon RL. Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology Evolution and Systematics. 2003; 6(1,2):51-71. DOI: 10.1078/1433-8319-00042
[129] Barlow J, Peres CA. Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical transactions of the Royal Society of London. Series B. 2008; 363(1498):1787-1794. DOI: 10.1098/rstb.2007.0013
[130] Pinard M. Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. Forest Ecology and Management. 1999; 116(1-3):247-252. DOI: 10.1016/s0378-1127(98)00447-2
[131] Silvério DV, et al. Testing the Amazon savannization hypothesis: fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philosophical transactions of the Royal Society of London. Series B. 2013; 368(1619):20120427. DOI: 10.1098/rstb.2012.0427
[132] Smith M, Nelson BW. Fire favours expansion of bamboo-dominated forests in the south-west Amazon. Journal of Tropical Ecology. 2010; 27(1):59-64. DOI: 10.1017/s026646741000057x
[133] Carvalho AL, et al. Bamboo-Dominated Forests of the Southwest Amazon: Detection, Spatial Extent, Life Cycle Length and Flowering Waves. PloS one. 2013; 8(1):1-13. DOI: 10.1371/journal.pone.0054852
[134] Dalagnol R, et al. Life cycle of bamboo in the southwestern Amazon and its relation to fire events. Biogeosciences. 2018. 15(20):6087-6104. DOI: 10.5194/bg-15-6087-2018
[135] Dickinson MB, Johnson EA. Fire effects on trees. In: E. A. Johnson and K. Miyanishi (Eds). Forest fires: behavior and ecological effects. p. 477-526, 2001. DOI: 10.1016/b978-012386660-8/50016-7
[136] Butler BW, Dickinson MB. Tree Injury and Mortality in Fires: Developing Process-Based Models. Fire Ecology. 2010; 6(1):55-79. DOI: 10.4996/fireecology.0601055
[137] Kavanagh KL, et al. A way forward for fire-caused tree mortality prediction: modeling a physiological consequence of fire. Fire Ecology. 2010; 6(1):80-94. DOI: 10.4996/fireecology.0601080
[138] Midgley JJ, et al. How do fires kill plants? The hydraulic death hypothesis and Cape Proteaceae "fire-resisters". South African Journal of Botany. 2011. 77(2):381-386. DOI: 10.1016/j.sajb.2010.10.001
[139] Gill AM, Ashton DH. The role of bark type in relative tolerance to fire of three central Victorian Eucalypts. Australian Journal of Botany. 1968; 16:491-498. DOI: 10.1071/bt9680491
[140] Wagner CE. Height of Crown Scorch in Forest Fires. Canadian Journal of Forest Research. 1973; 3:373-378. DOI: 10.1139/x73-055
[141] Kremens RL, et al. Fire metrology: current and future directions in physics-based methods. Fire Ecology. 2010; 6(1):13-35. DOI: 10.4996/fireecology.0601013
[142] Jones JL, et al. Prediction and measurement of thermally induced cambial tissue necrosis in tree stems. International Journal of Wildland Fire. 2006; 15:3-17. DOI: 10.1071/wf05017
[143] Bova AS, Dickinson MB. Linking surface-fire behavior, stem heating, and tissue necrosis. Canadian Journal of Forest Research. 2005; 35:814-822. DOI: 10.1139/x05-004
[144] Gutsell SL, Johnson EA. How fire scar are formed: coupling a disturbance process to its ecological effect. Canadian Journal of Forest Research. 1996; 26: 166-174. DOI: 10.1139/x26-020
[145] Hood SM, et al. Using Bark Char Codes to Predict Post-fire Cambium Mortality. Fire Ecology. 2008; 4(1):57-73. DOI: 10.4996/fireecology.0401057
[146] Lawes MJ, et al. Bark thickness determines fire resistance of selected tree species from fire-prone tropical savanna in north Australia. Plant Ecology. 2011; 212(12):2057-2069. DOI: 10.1007/s11258-011-9954-7
[147] Vesk PA, Westoby M. Sprouting ability across diverse disturbances and vegetation types worldwide. Journal of Ecology. 2004; 82(2):911-320. DOI: 10.1111/j.0022-0477.2004.00871.x
[148] Verdú M, et al. Burning phylogenies: fire, molecular evolutionary rates, and diversification. Evolution; international journal of organic evolution. 2007; 61(9): 2195-2204. DOI: 10.1111/j.1558-5646.2007.00187.x
[149] Pausas JG, et al. Unearthing belowground bud banks in fire-prone ecosystems. New Phytologist. 2018; 217(4):1435-1448. DOI: 10.1111/nph.14982
[150] Gill AM. Stems and fires. In:. Gartner. B. (Ed). Plant stems: physiology and functional morphology. Academic Press, New York: 323-342. 1995. DOI: 10.1016/b978-012276460-8/50016-3
[151] West T, et al. Experimental evidence for heat plume?induced cavitation and xylem deformation as a mechanism of rapid postfire tree mortality. New Phytologist. 2016; 211(3):828–838. DOI: 10.1111/nph.13979
[152] Dri ABN, et al. Origin of trunk damage in West African savanna trees: the interaction of fire and termites. Journal of Tropical Ecology. 2011; 27(3):269-278. DOI: 10.1017/s026646741000074x
[153] Hicke, JA, et al. Effects of bark beetle-caused tree mortality on wildfire. Forest Ecology and Management. 2012; 271:81-90. DOI: /10.1016/j.foreco.2012.02.005
[154] Hoffmann W, Solbrig OT. The role of topkill in the differential response of savanna woody species to fire. Forest Ecology and Management. 2000; 180(1-3):273-286. DOI: 10.1016/s0378-1127(02)00566-2
[155] Cirne P, Miranda HS. Effects of prescribed fires on the survival and release of seeds of Kielmeyera coriacea (Spr.) Mart. (Clusiaceae) in savannas of Central Brazil. Brazilian Journal of Plant Physiology. 2008; 20(3):197-204. DOI: 10.1590/s1677-04202008000300004
[156] Barot S, et al. Reproductive plasticity in an Amazonian palm. Evolutionary Ecology Research. 2005; 7(7):1051-1065. bioemco-00451776
[157] Gehring C, et al. Allometry of the babassu palm growing on a slash-and-burn agroecosystem of the eastern periphery of Amazonia. Acta Amazonica. 2011; 41(1):127-134. DOI:10.1590/S0044-59672011000100015
[158] Tomlinson PB. Systematics and ecology of the Palmae. Annual review of ecology and systematics. 1979; 10(1):85-107. DOI:10.1146/annurev.es.10.110179.000505
[159] Abrahamson WG. Species responses to fire on the Florida Lake Wales Ridge. American Journal of Botany. 1984; 35-43. DOI: 10.2307/2443621
[160] Miola DT, et al. The effect of fire on phenology of Syagrus glaucescens Glaz. ex Becc. (Arecaceae). Neotropical Biology and Conservation. 2010; 5(3): 146-153. DOI: 10.4013/nbc.2010.53.02
[161] Aponte H, et al. Vegetative adaptability of the Peruvian palm Astrocaryum perangustatum to deforestation. Revista Peruana de Biología. 2011; 18(2):179-183. DOI: doi.org/10.15381/rpb.v18i2.225
[162] Rocha GP, et al. Fast natural regeneration in abandoned pastures in southern Amazonia. Forest Ecology and Management. 2016; 370:93-101. DOI: doi.org/10.1016/j.foreco.2016.03.057
[163] Salm R. The importance of forest disturbance for the recruitment of the large arborescent palm Attalea maripa in a seasonally-dry Amazonian forest. Biota Neotropica. 2005; 5(1):35-41. DOI: doi.org/10.1590/s1676-06032005000100004
[164] Simões CG, Marques M. The role of sprouts in the restoration of Atlantic Rainforest in southern Brazil. Restoration Ecology. 2007; 15(1):53-59. DOI: doi.org/10.1111/j.1526-100x.2006.00189.x
[165] Flinn MA, Wein RW. Depth of underground plant organs and theoretical survival during fire. Canadian Journal of Botany. 1977; 55(19):2550-2554. DOI: 10.1139/b77-291
[166] Potter BE, Andresen JA. A finite-difference model of temperatures heat flow within a tree stem. Canadian Journal of Forest Research. 2002; 32:548-555. DOI: 10.1139/x01-226
[167] VanderWeide BL, Hartnett DC. Fire resistance of tree species explains historical gallery forest community composition. Forest Ecology and Management. 2011. 261(9):1530-1538. DOI: 10.1016/j.foreco.2011.01.044
[168] Van Mantgem P, Schwartz M. Bark heat resistance of small trees in Californian mixed conifer forests: testing some model assumptions. Forest Ecology and Management. 2003; 178(3):341-352. DOI: 10.1016/s0378-1127(02)00554-6
[169] Dickinson MB, Johnson EA. Temperature-dependent rate models of vascular cambium cell mortality. Canadian Journal of Forest Research. 2004; 34:546-559. DOI: 10.1139/x03-223
[170] Brando PM, et al. Fire-induced tree mortality in a neotropical forest: the roles of bark traits, tree size, wood density and fire behavior. Global Change Biology. 2012; 18(2):630-641. DOI: 10.1111/j.1365-2486.2011.02533.x
[171] Clarke PJ, et al. Resprouting as a key functional trait: how buds, protection and resources drive persistence after fire. The New Phytologist. 2013; 197(1):19-35. DOI: 10.1111/nph.12001
[172] Jura-Morawiec J, et al. Lateral meristems responsible for secondary growth of the monocotyledons: a survey of the state of the art. The Botanical Review. 2015; 81(2):150-161. DOI: 10.1007/s12229-015-9152-8
[173] Tomlinson PB, et al. The structural biology of palms. Oxford University Press, 1990. DOI: 10.2307/2807180
[174] Thomas R, et al. Palm stem anatomy and computer aided identification: The Coryphoideae (Arecaceae). American Journal of Botany. 2013; 100(2):289-313. DOI: 10.3732/ajb.1200242
[175] Tomlinson PB. The uniqueness of palms. Botanical Journal of the Linnean Society. 2006; 151(1):5-14. DOI: 10.1111/j.1095-8339.2006.00520.x
[176] Sevanto S, et al. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant, cell & environment. 2014; 37(1):153-161. DOI: 10.1111/pce.12141
[177] Balfour DA, Midgley JJ. Fire induced stem death in an African acacia is not caused by canopy scorching. Austral Ecology. 2006; 31:892-896. DOI: 10.1111/j.1442-9993.2006.01656.x
[178] Battipaglia G, et al. Effects of prescribed burning on ecophysiological, anatomical and stem hydraulic properties in Pinus pinea L. Tree physiology. 2016; 36(8):1019-1031. DOI: 10.1093/treephys/tpw034

Published

2020-06-10

How to Cite

Athaydes Liesenfeld, M. V. (2020). Fire Impacts on the Plant Individual Level and Future Directions of Fire Ecology in the Amazon Rainforest. South American Journal of Basic Education, Technical and Technological, 7(1), 618–647. Retrieved from https://periodicos.ufac.br/index.php/SAJEBTT/article/view/3187

Issue

Section

Artigos de Revisão