DIÓXIDO DE SELÊNIO: UM COMPOSTO INORGÂNICO VERSÁTIL EM SÍNTESE ORGÂNICA

  • Rosália Andrighetto Universidade Federal da Fronteira Sul (UFFS), Campus Cerro Largo.

Resumo

O composto inorgânico dióxido de selênio (SeO2) desempenha um papel importante na síntese orgânica, sendo de viável acesso econômico e de fácil manipulação. Visando oferecer uma via de acesso rápido às informações contidas em uma vasta literatura científica, apresenta-se um compilado das principais informações contidas em artigos científicos que abordam o emprego do SeO2 em uma variedade de importantes aplicações em síntese orgânica. Para tal, nesta pesquisa de cunho bibliográfico, foram exploradas referências da literatura científica que destacam a versatilidade sintética e a relevância quanto ao fato do SeO2 ser um reagente acessível, útil e eficiente em pesquisas clássicas e atuais na área da síntese orgânica. A partir desta revisão, reforça-se o potencial uso do composto SeO2 como agente oxidante seletivo útil em diversas reações orgânicas, processos de selenociclizações e catálise. E, com esta divulgação, espera-se estimular o interesse da comunidade acadêmica brasileira, de modo a fomentar o emprego do SeO2 em novas pesquisas no âmbito do planejamento e desenvolvimento na área da síntese orgânica para a construção de importantes arquiteturas moleculares.

Biografia do Autor

Rosália Andrighetto, Universidade Federal da Fronteira Sul (UFFS), Campus Cerro Largo.

Graduada em Química Industrial e licenciada em Química pela Universidade Federal de Santa Maria (UFSM), mestre e doutora em Química pela UFSM, é docente na Universidade Federal da Fronteira Sul (UFFS), campus Cerro Largo, RS – BR. Atua na área da Química, com ênfase nas subáreas: Físico-Química, Orgânica, Ensino de Química. Atualmente é coordenadora do Curso de Graduação em Química Licenciatura.

Referências

JORDAN, J. A.; GRIBBLE G. W; BADENOCK, J. C. A concise total synthesis of bruceolline E. Tetrahedron Lett, v. 52, p. 6772–6774, 2011.

ARSENYAN, P.; VASILJEVA, J.; BELYAKOV, S. Preparation of conjugated 6,6'-bbenzo[b]selenophenes. Mendeleev Commun, v. 24, p. 32–34, 2014.

SEREDYUK, M.; FRITSKY, I. O.; KRÄMER, R.; KOZLOWSKI, H.; HAUKKA, M.; GÜTLICH, P. New reaction of 1H-pyrazoles with selenium dioxide: one-pot synthesis of bis(1H-pyrazol-4-yl)selenides. Tetrahedron, v. 66, 8772–8777, 2010.

RILEY, H. L; MORLEY, J. F.; FRIEND, N. A. C. Selenium dioxide, a new oxidising agent. Part I. Its reaction with aldehydes and ketones. J Chem Soc, p. 1875–1883, 1932.

HACH, C. C.; BANKS, C. V.; DIEHL, H. Org Syn, v. 4, p. 229–231, 1963.

RILEY, H. A.; GRAY, A. R. Phenylglyoxal. Org Syn Coll, v. II, 509–511, 1943.

GUILLEMONAT, A. Oxidation of ethylenic hydrocarbons using selenium dioxide. Ann Chim Appl, v. 11, p. 143–211, 1939.

KURTI, L; CZAKO, B. Strategic Applications of Named Reactions in Organic Synthesis, 2005.

SINGLETON, D. A.; HANG, C. Isotope effects and the nechanism of allylic hydroxylation of alkenes with selenium dioxide. J Org Chem, v. 65, p. 7554–7560, 2000.

UMBREIT, M. A.; SHARPLESS, K. B. Allylic oxidation of olefins by catalytic and stoichiometric selenium dioxide with tert-butyl hydroperoxide. J Am Chem Soc, v. 99, p. 5526–5528, 1977.

SHARPLESS, K. B.; GORDON, K. M.; LAUER, R. F.; et al.. The utility of selenium reagents in organic synthesis. Chem Scr, v. 8, p. 9–13, 1975.

GOGOI, S.; ARGADE, N. P. A facile chemoenzymatic approach to natural cytotoxic ellipsoidone A and natural ellipsoidone B. Tetrahedron, v. 62, p. 2715–2720, 2006.

SHARPLESS, K. B.; LAUER, R. F. Selenium dioxide oxidation of olefins. Evidence for the intermediacy of allylseleninic acids. J Am Chem Soc, v. 94, p. 7154–7155, 1972.

CLAYDEN, J.; GREEVES, N.; WARREN, S. G. Organic chemistry. Oxford: New York: Oxford University Press, 2012.

SUGA, T.; SUGIMOTO, M.; MATSUURA, T. Bull Chem Soc Jpn, v. 36, p. 1363, 1963.

SHARPLESS, K. B.; GORDON, K. M. J. Am Chem Soc, v. 98, p. 300, 1976.

MAGNUS, P.; BENNETT, F. Selenium dioxide oxidation of a bridgehead trialkylsilyl enol ether. Tetrahedron Lett, v. 30, n. 28, p. 3637-3640, 1989.

NAKAMURA, A; NAKADA, M. Allylic oxidations in natural product synthesis. Synthesis, v. 45, p. 1421–1451, 2013.

FAIRLAMB, I. J. S.; J. M.; PEGG, M. Selenium dioxide E-methyl oxidation of suitably protected geranyl derivatives—synthesis of farnesyl mimics. Tetrahedron Lett, v. 42, p. 2205–2208, 2001.

(a) MECHELKE, M.; WIEMER, D. F. Preparation of aromatic farnesol analogues via a Cu(I)-mediated Grignard coupling of THP ethers. Tetrahedron Lett, v. 39, 783–786, 1998; (b) MECHELKE, M. F.; WIEMER, D. F. Synthesis of farnesol analogues through Cu(I)-mediated displacements of allylic THP ethers by Grignard reagents. J Org Chem, v. 64, n. 13, p. 4821–4829, 1999.

MARSHALL, J. A.; LEBRETON, J. [2,3] Wittig ring contraction: synthesis of p-menthane derivatives. J Org Chem, v. 53, p. 4108–4112, 1998.

PAZ, J. L.; RODRIGUES, J. A. R. Preparation of aromatic geraniol analogues via a Cu(I)-mediated Grignard coupling. J Braz Chem Soc, v. 14, n. 6, p. 975–981, 2003.

CHAVAN, S. P.; HARALE, K. R.; PURANIK, V. G.; GAWADE, R. L. Formal synthesis of (-)stemoamide using a useful epimerization at C-8. Tetrahedron Lett, v. 53, p. 2647–2650, 2012.

GELMAN, D. M; PERLMUTTER, P. Microwave-assisted selenium dioxide mediated selective oxidation of 1-tetralones to 1,2-naphthoquinones. Tetrahedron Lett, v. 50, p. 39–40, 2009.

FUJITA, M.; OJIMA, I. Selenium dioxide oxidation of 3-methyl-4,5,6,7-tetrafluoroindoles: an efficient route to tetrafluoro analogs of 3-formyl and 3-acetoxymethylindole systems. Tetrahedron Lett, v. 24, n. 42, p. 4573–4576, 1983.

LI, X.; ZHANG, Y-K, PLATTNER, J. J.; et al.. Synthesis and antibacterial evaluation of a novel tricyclic oxaborole-fused fluoroquinolone. Bioorg. Med. Chem. Lett, v. 23, p. 963–966, 2013.

GUTIÉRREZ-NICOLÁS, F.; GORDILLO-ROMÁN. B.; OBERTI, J. C.; et. al.. Synthesis and anti-HIV activity of lupane and olean-18- ene derivatives. Absolute configuration of 19,20-epoxylupanes by VCD. J Nat Prod, v. 75, n. 4, p. 669 - 676, 2012.

BONACORSO, H. G.; ANDRIGHETTO, R.; STEFANELLO, F. S.; et al.. 7-Chloro- and 2-amino-4-(trifluoromethyl)-1,8-naphthyridines: application in the synthesis of new azolyl-naphthyridines by SNAr and Clauson-Kass reaction. Int J Chem, v. 35, p. 1683-1690, 2014.

ADAM, R.; BALLESTEROS-GARRIDO, R.; VALLCORBA, O.; et al.. Synthesis and structural properties of hexaaza[5]helicene containing two [1,2,3]triazolo[1,5-a]pyridine moieties Tetrahedron Lett, v. 54, p. 4316–4319, 2013.

GHOSH, P.; DAS, J.; SARKAR, A.; et al.. Oxidation with selenium dioxide: the first report of solvent-selective steroidal aromatization, efficient access to 4β,7α-dihydroxy steroids, and syntheses of natural diaromatic ergosterols. Tetrahedron, v. 68, p. 6485–6491, 2012.

BÖCKER, R. H.; GUENGERICH, F. P. Oxidation of 4-aryl- and 4-alkyl-substituted 2,6-dimethyl-3,5-bis(alkoxycarbonyl)-1,4-dihydropiridines by human liver microsomes and immunochemical evidence for the involvement of a form of cytochrome P-450. J Med Chem, v. 29, p. 1596–1603, 1986.

GUENGERICH, F. P.; BRIAN, W. R.; IWASAKI, M.; et al.. Oxidation of dihydropyridine calcium channel blockers and analogues by human liver cytochrome P-450 3A4. J Med Chem 1991, 34, 1838–1844.

MATERN, A. I.; CHARUSHIN, V. N.; CHUPAKHIN, O. N. Progress in the studies of oxidation of dihydropyridines and their analogues. Russ Chem Rev, v. 76, p. 23–40, 2007.

FILIPAN-LITVIC, M.; LITVIC, M.; VINKOVIC, V. An efficient, metal-free, room temperature aromatization of Hantzsch-1,4-dihydropyridines with urea–hydrogen peroxide adduct, catalyzed by molecular iodine. Tetrahedron, v. 64, p. 5649–5656, 2008.

PLOTNIECE, A.; PAJUSTE, K.; KALDRE, D.; et al.. The aromatization/oxidation of 1,4-dihydropyridines to their corresponding pyridine derivatives. Tetrahedron, v. 65, p. 8344–8349, 2009.

LÓ, S. M. S.; DUCATTI,D R. B.; DUARTE, M. E. R; et al.. Synthesis of meso-tetraarylporphyrins using SeO2 as oxidant. Tetrahedron Lett, v. 52, p. 1441–1443, 2011.

NOGUEIRA, C. W.; ZENI, G.; ROCHA, J. B. T. Chem Rev, v. 104, n. 12, p. 6255–6286, 2004.

KACHANOV, A. V.; SLABKO, O. Y.; BARANOVA, O. V.; et al.. Triselenium dicyanide from malononitrile and selenium dioxide. One-pot synthesis of selenocyanates. Tetrahedron Lett, v. 45, p. 4461–4463, 2004.

ZHUANG, J.; WANG, C.; XIE, F.; ZHANG, W. One-pot efficient synthesis of aryl α-keto esters from aryl-ketones. Tetrahedron, v. 65, p. 9797–9800, 2009.

LI, Q.; SUN, D.; ZHOU, Y.; et al.. Anticancer activity of novel ruthenium complex with 1,10-phenanthrolineselenazole as potent telomeric G-quadruplex inhibitor. Inorg Chem Comm, v. 20, p. 142–146, 2012.

CHITRA, S.; PAUL, N.; MUTHUSUBRAIMANIAN, S.; et al.. A facile synthesis of carbocycle-fused mono and bis-1,2,3-selenadiazoles and their antimicrobial and antimycobacterial studies. Eur J Med Chem, v. 46, p. 5465–5472, 2011.

ULRICH, G.; GIESSEL, R. Selective Synthesis of a Novel Family of Oligopyridine Based Imino-Nitroxide Biradicals Catalysed by Selenium Dioxide. Tetrahedron Lett, v. 35, n. 8, p. 1215–1218, 1994.

CHEN, J.; LING, G.; LU, S. Synthesis of new unsymmetric N,N’-dipyridylurea derivatives by selenium and selenium dioxide-catalyzed reductive carbonylation of substituted nitropyridines Tetrahedron, v. 59, p. 8251–8256, 2003.

Publicado
2020-01-09
Como Citar
Andrighetto, R. (2020). DIÓXIDO DE SELÊNIO: UM COMPOSTO INORGÂNICO VERSÁTIL EM SÍNTESE ORGÂNICA. South American Journal of Basic Education, Technical and Technological , 6(2), 93-122. Recuperado de https://periodicos.ufac.br/index.php/SAJEBTT/article/view/2576
Seção
Artigos Originais Ciências Exatas e da Terra