

UÁQUIRI

Revista do Programa de Pós-Graduação em Geografia

UÁQUIRI - PPGGEO, v. 5, n. 2, p. 131-151, ano 2023 Home page: https://periodicos.ufac.br/index.php/Uaquiri

ISSN 2675-4088

A TEMPORALIDADE DAS PRECIPITAÇÕES NO LITORAL NORTE DE PERNAMBUCO ENTRE OS ANOS 2000 A 2022: O USO DA TÉCNICA DIAGRAMA DE CAIXAS (*BOX PLOT*) PARA A AVALIAÇÃO ANUAL E MENSAL

Rafaela Melissa Andrade Ferreira^{1*}, ^{Msc.} Maria do Socorro Silva Salvador², ^{Msc.} Tamires Gabryele de Lima Mendes³, ^{Msc.} Larissa Furtado Lins dos Santos⁴, ^{Msc.} Tânelly Neriah Santos⁵ ORCID: https://orcid.org/0000-0002-6777-9317; https://orcid.org/0000-0002-1011-0479; https://orcid.org/0000-0002-5650-2726

¹Mestranda da Universidade Federal do Paraná, Programa de Pós-graduação em Geografia, Curitiba, Paraná, Brasil, ²Doutoranda da Universidade Federal do Paraná, Programa de Pós-graduação em Geografia, Curitiba, Paraná, Brasil, ³Doutoranda da Universidade Federal de Pernambuco, Programa de Pós-graduação em Geografia, Recife, Pernambuco, Brasil, ⁴Doutoranda da Universidade Federal de Pernambuco, Programa de Pós-graduação em Geografia, Recife, Pernambuco, Brasil, ⁵Doutoranda da Universidade Federal de Rondônia, Programa de Pós-graduação em Geografia, Porto-Velho, Rondônia, Brasil.

*rafaela.andrade@ufpr.br.

Recebido em: 27/07/2023; Aceito em: 03/11/2023; Publicado em: 30/12/2023 DOI: https://doi.org/10.29327/2151710.5.2-7

RESUMO

No presente artigo, a variabilidade das chuvas em três postos pluviométricos, localizados no litoral norte da Região Metropolitana do Recife, capital do estado de Pernambuco, é avaliada em uma série temporal de 2000 a 2022. A principal motivação para a realização da pesquisa foi a falta de estudos considerando as áreas abordadas, uma vez que são suscetíveis à ocorrência de eventos extremos, assim como a centralidade urbana imediata (cidade do Recife) na qual estão submetidos os municípios de Olinda, Paulista e Itamaracá. Dessa forma, a estratégia metodológica utilizada foi uma técnica já consagrada no campo da climatologia geográfica: o diagrama de caixas ou *box plot*. Apesar de sua ampla utilização, parte-se do pressuposto de que essa proposta representa um modelo livre de complexidades, mas dotado de objetividade e eficiência para a classificação de meses secos e chuvosos. Sendo assim, os resultados encontrados foram investigados com o subsídio de gráficos e figuras-síntese das classificações dos anos e meses

Palavras-chave: Climatologia; variabilidade; estatística; nordeste.

THE TEMPORALITY OF RAINFALL ON THE NORTH COAST OF PERNAMBUCO BETWEEN THE YEARS 2000 TO 2022: THE USE OF THE BOX DIAGRAM TECHNIQUE (BOX PLOT) FOR THE MONTHLY EVALUATION

ABSTRACT

In the present article, the variability of rainfall in three pluviometric stations located on the north coast of the Metropolitan Region of Recife, capital of the state of Pernambuco, is evaluated in a time series from 2000 to 2022. The main motivation for carrying out the research was the lack of of studies considering the areas addressed, since they are susceptible to the occurrence of extreme events as well as the immediate urban centrality (city of Recife) in which the municipalities of Olinda, Paulista and Itamaracá are submitted. Thus, the methodological strategy used was a technique already established in the field of geographic climatology: the box plot. Despite its wide use, it is assumed that this proposal represents a model free of complexities, but endowed with objectivity and efficiency for the classification of dry and rainy months. Therefore, the results found were investigated with the aid of graphs and summary figures of classifications of years and months.

Keywords: Climatology; variability; statistics; northeast.

LA TEMPORALIDAD DE LAS LLUVIA EN LA COSTA NORTE DE PERNAMBUCO ENTRE LOS AÑOS 2000 A 2022: EL USO DE LA TÉCNICA DE DIAGRAMA DE CAJA (BOX PLOT) PARA LA EVALUACIÓN MENSUAL

RESUMEN

En el presente artículo se evalúa la variabilidad de las precipitaciones en tres estaciones pluviométricas ubicadas en el litoral norte de la Región Metropolitana de Recife, capital del estado de Pernambuco, en una serie temporal de 2000 a 2022. La principal motivación para la realización de la investigación fue la falta de estudios considerando las áreas abordadas, ya que son susceptibles a la ocurrencia de eventos extremos, así como la centralidad urbana inmediata (ciudad de Recife) en la que están sometidos los municipios de Olinda, Paulista e Itamaracá. Así, la estrategia metodológica utilizada fue una técnica ya establecida en el campo de la climatología geográfica: el box plot. A pesar de su amplio uso, se supone que esta propuesta representa un modelo libre de complejidades, pero dotado de objetividad y eficiencia para la clasificación de meses secos y lluviosos. Por lo tanto, los resultados encontrados fueron investigados con la ayuda de gráficos y cifras resumen de clasificaciones de años y meses.

Palabras clave: Climatología; variabilidad; estadísticas; noreste.

1. INTRODUÇÃO

A variabilidade do sistema climático e das variáveis atmosféricas é notável em qualquer escala temporal que se considere. Tal questão é válida para todas as variáveis meteorológicas, independentemente da existência ou não de tendências em seu comportamento cronológico. Dentro desses elementos supracitados, estima-se que a precipitação é aquela que apresenta a maior gama de variações e espacialidades, o que sugere uma necessidade de caracterizar e modelar esses processos além das escalas que podem ser resolvidas a partir de observações.

Além disso, a importância da chuva assenta-se não só pela sua reconhecida função no ciclo da água, como também pela influência em aspectos socioambientais, visto que mudanças no comportamento da pluviosidade, muitas vezes, ocasionam "calamidades naturais", como

enchentes, secas e erosão do solo. Sobre essa questão, Fontão e Zavattini (2019) destacaram que é importante reiterar o papel da dinâmica atmosférica nos estudos climatológicos que levam em consideração a precipitação, pois irregularidades temporais e espaciais estão correlacionadas a sequências de tipos de tempo excepcionais e, nem sempre, a população está devidamente preparada para os possíveis efeitos.

Desta forma, alguns índices climáticos são utilizados para mensurar o comportamento de períodos secos e chuvosos, a depender da região em que se pretende realizar o monitoramento. Assim, os extremos são investigados, geralmente, utilizando-se ferramentas de estatística descritiva acopladas a métodos e técnicas específicas (Reboita, 2017; Gozzo et al., 2021). Neste sentido, uma das ferramentas utilizadas com mais frequência para detectar características temporais da chuva para um determinado conjunto de dados é o *box plot* em razão da sua confiabilidade para as escalas anuais e mensais (Zhao, 2019).

O nordeste do Brasil pode ser definido como uma região na qual as influências das forçantes de interação entre oceano-atmosfera condicionam as diferenças em relação às chuvas registradas, visto que as anomalias de TSM no Pacífico, em anos de El Niño, são positivas em sua porção central e leste, ao passo que eventos de La Niña são observados em comportamento inverso, ou seja, anomalias negativas (Martins, 2017).

Por isso, é válido avaliar e quantificar a persistência e a aleatoriedade dos dados de precipitação em diferentes períodos, embora se reconheça a carência em relação ao conjunto de dados observacionais consistentes que comprometem o monitoramento da chuva na região, necessitando das técnicas complementares de preenchimento de falhas existentes em séries temporais ou estimativa de dados (Costa *et al.*, 2019; Santos, 2019; Brubacher, 2020).

No litoral norte de Pernambuco, locus de análise da presente pesquisa (figura 1), o clima pode ser explicado por meio da atuação de sistemas de mesoescala e das condições de temperatura da superfície do mar (TSM) no Atlântico Tropical e no Pacífico, tendo como principal influência a atuação dos Sistemas Convectivos de Mesoescala e Linhas de Instabilidade (LI), que modificam a posição da Zona de Convergência Intertropical (ZCIT), do Vórtice Ciclônico de Altos Níveis (VCAN), Distúrbios ou Perturbações Ondulatórias de Leste (DOLs) e alguns sistemas frontais. Estes, a depender da época do ano, interferem no tempo do NEB (Nordeste brasileiro) de maneira distinta.

Diante do exposto, o objetivo geral foi o de caracterizar a temporalidade das chuvas em estações pluviométricas localizadas na Região Metropolitana do Recife, usando técnicas

baseadas na estatística descritiva. Para atingir tais objetivos, buscou-se gerar produtos (gráficos e figuras síntese) que evidenciaram a espacialidade e a temporalidade das chuvas para, posteriormente, relacionar e comparar a variabilidade da precipitação pluvial de um posto para outro.

A seguir, podemos ver a região em que nossos estudos se concentraram:

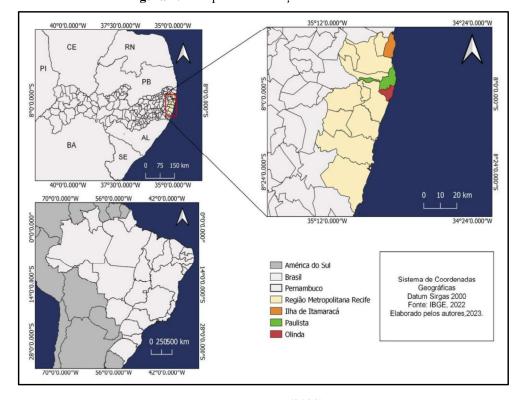


Figura 1: - Mapa de localização da área de estudo

Fonte: Autores (2023)

2. MATERIAIS E MÉTODOS

Os dados meteorológicos utilizados na pesquisa foram levantados e coletados através de elenco e banco de dados digitais disponibilizados na internet, em site de órgão públicos de forma gratuita. Para a compilação, análise, seleção e tratamento dos dados foram utilizados os softwares Microsoft Access 2010 e Microsoft Excel 2010. A confecção dos gráficos e tabelas, muito úteis para a síntese e interpretação dos resultados, foi realizada através do Excel e do software *Past /PAleontological STatistics*, sendo este último gratuito e abrangente em termos de algoritmos estatísticos e gráficos para a investigação científica (Hammer, 2001). A delimitação, localização e o material cartográfico da pesquisa foram feitos utilizando-se o software ArcGIS 10.0, da ESRI.

2.1 Processo de coleta e manipulação dos dados pluviométricos

A seleção dos postos pluviométricos para compor o agrupamento de dados da pesquisa foi adquirida de forma secundária, ou seja, através de disponibilização feitas por agências nacionais e estaduais. Deste modo, em um primeiro momento, foi realizado um levantamento das estações localizadas na área de estudo por meio das informações coletadas no site da Agência Nacional de Águas (ANA), visando obter um panorama da situação específica da área de estudo.

Sendo assim, foram resgatadas 158.374 redes pluviométricas dispostas em todo o território pernambucano e, em conjunto, informações acerca das latitudes, longitudes e altitudes. Buscando afunilar ainda mais o procedimento, somente as estações pluviométricas de interesse passaram pelo processo de refinamento por localização geográfica (de 7° a 8° S e 34° a 35° W).

Dessa forma, o número de estações foi reduzido de maneira significativa para 111 postos coletados pelo portal Hidroweb, pertencente à ANA (Agência Nacional de Águas), que coaduna, no Sistema Nacional de Informações sobre Recursos Hídricos (SNIRH), registros da maior parte das estações existentes tanto de posse das agências públicas quanto de posse de instituições privadas.

Ademais, dentre as principais agências operantes na Região Metropolitana do Recife, cabe mencionar a Agência Pernambucana de Águas e Clima (APAC), que foi criada através da Lei Estadual nº14.028 de 26 de março de 2010 com o objetivo de fortalecer o planejamento e a regulação dos usos múltiplos dos Recursos Hídricos do Estado. Cita-se ainda o Sistema Integrado de Gerenciamento dos Recursos Hídricos (SIGRH), onde o acesso aos dados pluviométricos pode ser feito por meio do histórico de chuvas disponível no link: http://old.apac.pe.gov.br/meteorologia/monitoramento-pluvio.ph.

Dessa maneira, os postos escolhidos foram os de Olinda (APAC), Paulista (APAC) e Itamaracá (APAC). O método de consistência utilizado para avaliar as falhas anuais e mensais foi o indicado pela Agência Nacional de Águas (ANA), que consiste na técnica da ponderação regional. Assim, com o intuito de homogeneizar o período de informações para um grupo de postos, devem ser selecionadas pelo menos três estações que possuam, no mínimo, dez anos de dados. Além do mais, os postos vizinhos devem apresentar características de regime de precipitação não discrepantes para que a ponderação regional possa ser aproveitada com um

bom desempenho, conforme Bertoni e Tucci (2001), Mello et al., (2005), Zandonadi (2009) e Diaz (2018).

O preenchimento efetuado por esta metodologia é simples e apresenta algumas limitações quando cada valor é visto isoladamente. Para a correção de valores diários de precipitação, não se deve utilizar esta metodologia, pois os resultados podem ser muito ruins. Normalmente, valores diários são de difícil preenchimento devido à grande variação espacial e temporal da precipitação para os eventos de frequências médias e pequenas.

Em complemento, o método de regressão linear, que consiste em utilizar regressões lineares simples ou múltiplas para o preenchimento de falhas, foi adotado para estabelecer níveis de confiança para as estações que passaram pelo processo de correção. Na regressão linear simples, as precipitações do posto com falhas e de um posto vizinho são correlacionadas. Na regressão linear múltipla, as informações pluviométricas do posto com falhas são correlacionadas com as correspondentes observações de vários postos vizinhos.

2.2 Procedimentos estatísticos preliminares aplicados

Uma vez concluídas as etapas descritas acima, foram calculadas / descritas as medidas de tendência central e variabilidade: média, valor máximo, valor mínimo, amplitude, mediana, desvio padrão (S) e coeficiente de variação (CV) no *software* Bioestat, que fornece uma opção de análise estatística descritiva detalhada para cada um dos conjuntos dos dados. Nesse viés, o cálculo do desvio padrão (S) foi realizado de acordo com a seguinte fórmula:

$$DP = \sqrt{\frac{\sum_{i=1}^{n} (x_i - M_A)^2}{n}}$$

∑: símbolo de somatório: indica que temos que somar todos os termos, desde a primeira posição (i=1) até a posição n

xi: valor na posição i no conjunto de dados

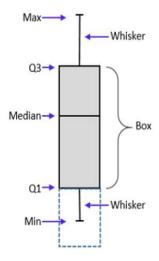
MA: média aritmética dos dados

n: quantidade de dados

No intuito de calcular a relação entre o desvio padrão e a média aritmética, o CV (coeficiente de variação) foi adotado para analisar a medida de dispersão entre os valores. Na climatologia, o coeficiente de variação tem sido usado a fim de comparar a variabilidade da precipitação em duas ou mais áreas diferentes (Jensen, 2005; Silva *et al.*, 2011; Thangjai, 2020). A fórmula é dada por:

$$CV = \frac{s}{\bar{x}} \cdot 100$$

Onde:


s é o desvio padrão X é a média dos dados CV é o coeficiente de variação

2.3. Técnica box plot (diagrama de caixas)

O modelo de análise dos dados pluviométricos, através do diagrama de caixas, diz respeito à adoção de determinados parâmetros fundamentais na adoção do método. Sendo assim, a organização dos valores deve ocorrer de forma crescente ou decrescente, no intuito de diferenciar as características sazonais dos valores (Schneider e Silva, 2014; Fontão e Ferreira, 2022).

As definições procedimentais das estatísticas descritivas por essa técnica são dadas por valores mínimos e máximos, mediana, quartis e *outliers* e *whiskers* (figura 2), de modo que, na parte inferior, concentram-se 5% dos dados; na base superior, por sua vez, 95% dos dados e os outliers se estendem até o limiar definido e representam os eventos extremos na série (Santos e Galvani, 2017).

Figura 2 – Elementos do gráfico Box-plot

Sob este contexto, conforme o quadro 1, os valores que se encontram entre o valor mínimo e o 1º quartil são denominados de meses secos; entre o 1º e o 3º quartil, são denominados de meses normais e, por fim, aqueles entre o 3º quartil e o valor máximo são denominados de meses úmidos. Aqueles meses em que o total de precipitação estiver entre os 5% dos menores valores e os 5% dos maiores valores serão denominados, respectivamente, de super secos e super úmidos (Galvani e Luchiari, 2012; Silva, 2017). Em um primeiro passo, os dados de todos os meses das seis estações selecionadas para o estudo foram tabelados de forma crescente, seguindo a função de classificação do menor para o maior do software Excel. Tal processo foi essencial para identificar, em conjunto, os valores discrepantes da série.

Quadro 1 - Categorias utilizadas para classificação dos meses da série

Precipitação mensal (mm)	Classificação
5% menores valores da série	Super-secos
5% maiores valores da série	Super-úmidos
Entre o valor mínimo e o 1Q	Secos
Entre o 1Q e o 3Q	Normais
Entre o 3Q e o valor máximo	Úmidos

Fonte: Galvani e Luchiari (2012)

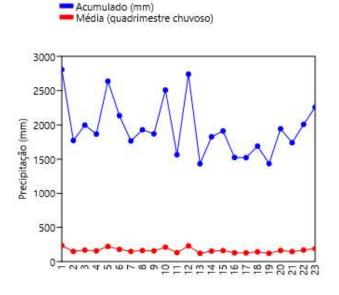
3. RESULTADOS E DISCUSSÕES

A distribuição das chuvas na porção norte da Região Metropolitana do Recife apresenta uma considerável variabilidade ao longo do tempo, característica coerente com as condições da atuação de sistemas sinóticos para essa região em determinados períodos. Desse modo, diante da visível irregularidade das precipitações nos três postos utilizados, pode-se observar a importância das análises realizadas mês a mês, uma vez que interferem na escala de afirmação entre um ano com maior ou menor disposição de chuvas em uma determinada localidade. Daí a constatação de Tavares (1976): embora fundamentada em aspectos climáticos bem definidos, a escolha de anos-padrões está calcada na arbitrariedade do pesquisador.

É possível inferir, primeiramente, alguns padrões pluviométricos a partir da avaliação estatística descritiva básica e dos três gráficos (figuras 3, 4 e 5) produzidos para comparar os acumulados de chuvas anuais e a média do quadrimestre com maiores índices pluviométricos. Em um contexto geral, nota-se, com unanimidade para todos os postos, que o ano considerado com maior total pluviométrico foi o mesmo (ano 2000), exceto na estação localizada no município de Itamaracá.

Uma das hipóteses formuladas para essa tendência encontra-se na proximidade entre as estações, visto que tanto a de Paulista quanto a de Olinda encontram-se em relativa proximidade geográfica, visto que são cidades conurbadas entre si. Além do mais, outro fator geográfico, como o próprio relevo envolvido na região, pode exercer influência na dinâmica das chuvas, já que há diferenças quanto à morfoestrutura visualizada em Itamaracá conforme Fonsêca (2016).

Desta forma, fragmentos de tabuleiros costeiros rebaixados e reduzidos às feições de morfologias convexas definem essas distinções. Outrossim, a interferência da direção dos ventos entre as localidades é outra condição para as mudanças nos volumes precipitados e no fluxo de umidade na linha de costa do estado de Pernambuco (Anjos, 2020). Feitas as ressalvas, a interpretação dos gráficos também permite afirmar que nem sempre os anos com totais pluviométricos acentuados são os mesmos anos com os períodos chuvosos mais expressivos.


Tomando por base essa questão, os postos de Olinda e Paulista exemplificam esses parâmetros, com o ano de 2011 destacando-se como o que obteve uma média de precipitações mais elevadas (374,5 mm para Olinda e 413,4 mm para Paulista) diante de toda a série histórica. Em contrapartida, para o posto de Itamaracá, o ano de 2022 apresentou a maior média do período chuvoso e os maiores acumulados totais.

As mesmas perspectivas são verificadas no contraste dos anos com menor índice pluviométrico da série. Nesta amplitude, enquanto o ano de 2018 obteve os menores volumes precipitados no posto de Olinda, o ano de 2012 esteve abaixo da média para Paulista e Itamaracá, com precipitações pluviais de 1432,8 mm e 1197,1 mm, respectivamente.

Deve-se mencionar que, apesar de o posto de Olinda ter registrado as menores pluviosidades acumuladas em 2018, o quadrimestre chuvoso com maiores chuvas consideradas abaixo da média foi o de 2012 (153,4 mm), assim como nos outros postos, com 168,9 mm para Paulista e 147, mm para Itamaracá. Com efeito, o ano de 2012 apresentou volumes totais precipitados e um quadrimestre chuvoso abaixo da média em todos os municípios aproveitados para o estudo.

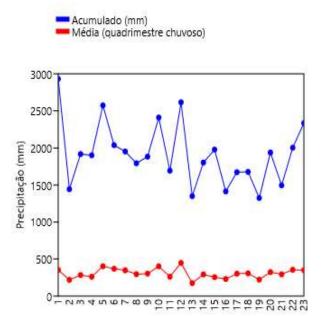
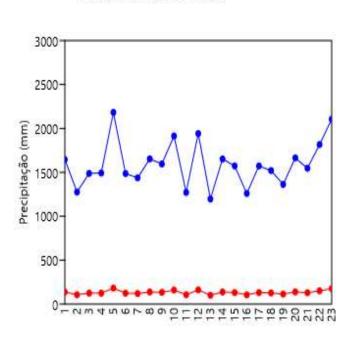

Além disso, os acumulados para o mês mais chuvoso na região (junho) também ficaram abaixo do esperado em todos os postos. Vale ressaltar que as contribuições negativas das precipitações, no período de pré-estação chuvosa, também interferiram na situação excepcional do referido ano climatológico. Com efeito, a existência de anos irregulares pode evidenciar predomínios setorizados na precipitação ao longo do período anual, gerando características pluviais que diferem do habitual.

Figura 3 – Relação entre o acumulado de precipitação (2000-2022) e a média do quadrimestre chuvoso para o posto Olinda

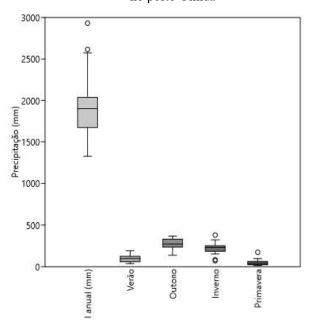
Fonte: Organizado pelos autores (2023)

Figura 4 – Relação entre o acumulado de precipitação (2000-2022) e a média do quadrimestre chuvoso para o posto Paulista



Fonte: Organizado pelos autores (2023)

Figura 5 – Relação entre o acumulado de precipitação (2000-2022) e a média do quadrimestre chuvoso para o posto Itamaracá


Acumulado (mm)

Média (quadrimestre chuvoso)

Fonte: Organizado pelos autores (2023)

Na representação dos diagramas de caixas obtidos para a série completa, cada posto apresentou uma particularidade quanto à distribuição sazonal. Sendo assim, observa-se que, em Olinda (figura 6), as assimetrias foram consideradas positivas em todas as estações do ano, exceto para o inverno, uma vez que a média aritmética esteve abaixo do 2° quartil, de modo que o valor da mediana para o período foi de 230,2 e a média de 224. Na primavera, a tendência de assimetria positiva é mais veemente e o percentual de chuvas é reduzido. A presença de um *outlier* superior indicou um registro fora do *range* (5 a 95% das observações) e essa precipitação, considerada excepcional diante do agrupamento dos dados, esteve correlacionada ao ano climatológico de 2001, uma vez que o mês de outubro foi classificado como super-úmido.

Figura 6 - Sazonalidade dos índices pluviométricos entre os anos 2000 a 2022 no posto Olinda

Fonte: Organizado pelos autores (2023)

Nos meses referentes ao inverno, também é possível visualizar alguns *outliers*, tanto no limite inferior, quanto no limite superior. Tais extremos estiveram presentes nos meses de agosto de 2000, para um limite máximo de 470 mm, e dezembro de 2019, para um limite mínimo de 1,9 mm; estes são meses, respectivamente, super-úmidos e super-secos. Em uma avaliação conjunta da figura 6 e da tabela 1, percebe-se que as amplitudes totais das médias sazonais são proporcionais ao achatamento das caixas, denotando um período chuvoso

compreendido entre os meses de outono-inverno, a mesma comparação numérica foi encontrada por Oscar Júnior (2015) e Caldana *et al.*, (2017).

Tabela 1 - Resumo dos dados gerados por estatísticas descritivas básicas para o posto Olinda

	Verão	Outono	Inverno	Primavera
Mínimo	37,4	137,8	72	15,1
Máximo	191,9	368,5	379,7	173,4
Amplitude total Coeficiente de	154,5	230,2	307,7	158,3
variância	41,8%	21,5%	30,4%	76,9%
Desvio padrão	41,2	59,2	68,1	35,9

Fonte: Organizado pelos autores (2023)

O CV% (coeficiente de variação) elevado para a primavera pode ser explicado pela alta variabilidade de volumes precipitados durante esse período, podendo existir valores dentro, acima e fora da média durante a série histórica, assim como no verão, ainda que em menor porcentagem. Por outro lado, no outono e no inverno, há a presença de maiores volumes diários de chuva, que contribuem de maneira significativa para o total mensal. Basicamente, quanto maior for o CV, maior será a heterogeneidade do comportamento dos dados de pluviosidade em alguma localidade ou posto.

A proposta de categorização por cores (figura 7) corroborou no processo de identificação dos padrões das precipitações anuais e mensais. Desse modo, entre os anos 2000 a 2005, foram predominantes meses classificados como normais a úmidos, com destaque para o ano 2000, como já foi supracitado nas análises anteriores. Entre 2006 a 2011, a mesma tendência é verificada, embora se reconheça uma frequência maior de anos relatados como normais e úmidos em relação aos cinco anos anteriores.

Figura 7 - Classificação dos anos segundo método *Box Plot* para o posto Olinda (APAC) entre os anos de 2000 a 2022

Anos	Janeiro	neiro Fevereiro			Março		Abril		Maio		Junho		Julho		Agosto		Setembro		Outubro	o Novembro			Dezembro
2004	302,9	2004	270,2	2003	335,8	2018	522,2	2016	658,3	2004	646,9	2011	527	2000	470,8	2014	226,5	2001	124,4	2000	236,9	2000	276,9
2012	261,5	2009	224,5	2002	288,9	2009	455,4	2005	608,1	2005	602,1	2019	501,3	2005	302,8	2000	178,1	2010	73,4	2013	69,4	2010	146,8
2011	232,1	2012	166	2022	260,7	2021	394,6	2021	576,6	2006	554,6	2004	408,4	2008	261,9	2007	129,6	2014	67,1	2011	61,8	2006	100,9
2000	158,6	2011	146,7	2008	254,4	2011	392,1	2011	504,3	2022	508,9	2000	396,7	2021	261.1	2013	114,8	2013	54,2	2022	51,5	2013	88,4
2022	145,6	2003	145,1	2017	189,5	2001	371	2022	496,1	2010	493	2013	386,9	2022	241,4	2006	103,7	2022	45,3	2002	47,3	2001	76,2
2002	139,5	2002	128,9	2014	186,5	2000	352,6	2009	461,6	2000	473,5	2009	361,9	2011	239,6	2003	93,6	2003	43,8	2006	43,2	2015	75,4
2014	119,2	2019	113,4	2015	176	2020	307,9	2008	353,4	2002	457,1	2017	348,8	2009	200	2001	77	2012	37,8	2014	32	2021	72,3
2009	113,4	2007	108,9	2009	174	2007	304,9	2020	351,6	2003	428,2	2015	322,7	2014	186,9	2010	72,5	2007	33,2	2019	31,1	2014	62,4
2016	110,5	2000	107,3	2016	170,7	2016	285	2004	321,8	2019	422,2	2008	307,7	2004	171,5	2019	64,8	2019	32,1	2009	23,9	2003	62,2
2018	105	2022	95,7	2006	162,1	2006	283,9	2006	321,5	2017	416,2	2003	293,2	2003	155,7	2004	60	2017	32	2018	21,5	2022	60,8
2019	100,5	2005	91,4	2019	160,3	2014	260,8	2014	279,2	2007	396,4	2002	250,9	2007	151,8	2017	55,9	2002	28,3	2021	16,8	2005	60,4
2010	85,9	2014	81,5	2004	132,2	2019	232,3	2007	266,1	2008	392,5	2006	225,8	2001	149,7	2020	46,2	2005	25,5	2010	16,8	2020	29,7
2013	84,6	2018	78.1	2018	127,5	2010	227,6	2002	261,8	2011	359,7	2020	216,9	2019	143,3	2015	42,6	2008	21,8	2020	15,8	2009	28,1
2007	58	2016	74	2007	107,2	2004	227,1	2017	245,5	2015	355,5	2012	215,7	2013	136,6	2011	41,7	2004	20,1	2003	13,4	2018	20,4
2008	51	2020	67,2	2000	99,9	2013	225,7	2003	238,1	2009	320,8	2007	209,5	2010	130,9	2022	41	2021	18,7	2016	13,4	2007	19
2021	50,4	2021	63,3	2001	92,2	2017	213,3	2013	231,8	2013	319,1	2001	206,3	2015	124	2009	38,4	2011	14,8	2004	10,5	2017	18,4
2001	37,2	2008	35	2010	90,6	2022	208,4	2000	186,3	2014	297,4	2010	204,4	2002	123	2021	35,9	2016	11,2	2015	9,4	2016	15,8
2017	27,1	2013	34,4	2011	89,7	2002	159,7	2015	173,2	2020	295,8	2021	199,3	2006	121,7	2018	33,7	2015	9,5	2007	9,3	2008	13,6
2015	24,6	2010	34	2020	77,7	2008	156,3	2018	155,1	2012	295,6	2022	180,2	2017	117	2016	30,3	2009	8,3	2001	5,8	2012	12,1
2006	19,6	2015	33,9	2021	70,6	2005	121,1	2019	136,2	2001	260,9	2014	179,1	2012	95,4	2008	29,8	2020	8,1	2017	5,6	2002	9,2
2003	10,3	2006	11,5	2012	68,7	2003	82,3	2010	117,9	2021	244,8	2005	140,2	2020	76,4	2002	23,5	2018	7,5	2008	5,2	2011	6,8
2005	9,9	2017	8,7	2013	58,1	2012	72	2012	115	2016	166	2016	95,3	2018	46,7	2005	17,2	2006	4,4	2005	2,3	2004	S
2020	3	2001	0,6	2005	57,2	2015	67,7	2001	35,6	2018	135,1	2018	72,7	2016	43,1	2012	9,2	2000	2	2012	1,5	2019	1,9

Fonte: Organizado pelos autores (2023)

Dos anos 2012 a 2017, notou-se uma mudança de tendência, haja visto a predominância de anos com meses compreendidos entre as categorizações secas a normais, com ênfase para os anos de 2012 e 2016 na concentração de meses secos e super-secos. De 2018 a 2022, o mesmo dado persiste. Contudo, o percentual de anos úmidos a super-úmidos é o menor em relação a todos os conjuntos anuais analisados anteriormente, indicando uma possível propensão à presença de chuvas cada vez mais concentradas, que necessitam de uma avaliação microtemporal. Cabe mencionar que tais indícios não eliminam a possibilidade de ocorrência de eventos extremos impactantes durante esse recorte histórico, conforme evidenciaram Silva *et al.*, (2020) em um estudo a partir da utilização do índice de precipitação padronizada (SPI) e da discussão com fenômenos atmosféricos moduladores das chuvas para a região.

No segundo posto avaliado, a sazonalidade das chuvas apresentou um intervalo interquartílico (IIQ) variado para todas as estações do ano. Ou seja, a dispersão da metade central dos dados, definida pela relação entre o 3° quartil menos o 1° quartil, sofreu alterações, conforme a probabilidade de ocorrência de precipitação mensal em uma das caudas da distribuição ilustrada na figura 7. Deste modo, tal desvio interquartílico foi mais acentuado no outono (84,8), coincidindo com o período de maior disposição das chuvas para o posto. Em

contrapartida, os valores menos afetados pelo desvio coincidem com o período de menor variabilidade da precipitação (primavera).

Paralelo ao posto Olinda, o achatamento das caixas e o tamanho dos *whiskers* indicaram um acumulado de precipitação anual menor no posto Paulista. Os *outliers* superiores do inverno estiveram relacionados aos meses de junho e agosto de 2004; já o inferior foi dado por um índice pluviométrico abaixo da média registrado no mês de agosto de 2015. Na primavera, o *outlier* superior foi associado ao mês de novembro de 2002. No outono, onde as maiores médias de precipitação são identificadas, não houve nenhum pico alto de ponto *outlier*, o que possibilita o entendimento de valores dentro da habitualidade em um contexto amplo, apesar dos eventos de chuva forte ocorrentes.

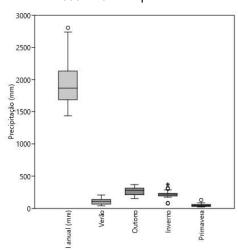


Figura 7 - Sazonalidade dos índices pluviométricos entre os anos 2000 a 2022 no posto Paulista

Fonte: Organização dos autores (2023)

De acordo com a tabela 2, um desvio padrão de 64,3 demonstrou que a maior parte do intervalo dos dados esteve centrado no período de inverno, caracterizando um momento de maior heterogeneidade das chuvas em relação à primavera e ao inverno, por exemplo, aspecto que também corrobora o entendimento dos valores de variância encontrados para o posto analisado.

Ressalta-se que as pequenas mudanças nos valores de média, CV e desvio padrão podem produzir mudanças maiores na probabilidade de eventos extremos. No que tange aos valores dos quartis, as estatísticas aplicadas indicaram que as assimetrias foram positivas para o verão

e o outono e negativas para o inverno e a primavera, pois o 2° quartil esteve abaixo da média aritmética.

Tabela 2 - Resumo dos dados gerados por estatísticas descritivas básicas para o posto Paulista

	Verão	Outono	Inverno	Primavera
Mínimo	40,6	155,1	78,1	23,4
Máximo	207,6	369,6	371,9	131,7
Amplitude total Coeficiente de	166,7	214,4	293,7	108,3
variância	38,5%	23,3%	28,8%	51,5%
Desvio padrão	43	62,2	64,3	26

Fonte: Organizado pelos autores (2023)

Nas classificações coropléticas, a figura 8 permite inferir que, nos primeiros cinco anos da série histórica, houve o predomínio de anos normais a úmidos. Essa constatação já feita para os postos anteriores pode ser explicada, em partes, pela influência dos mecanismos de gênese atmosférica e dos sistemas de menor escala espacial que atuam sobre a região e que são apontados como causadores de eventos chuvosos na área. Sobre o exposto, Girão (2006) avaliou que a anomalia registrada no ano de 2000 esteve diretamente ligada aos cavados barométricos atuantes sobre o litoral oriental nordestino, que refletiu em um desvio positivo de pluviosidade em relação à média para as cidades da Região Metropolitana do Recife (RMR).

A preponderância de anos considerados normais a úmidos persistiu no segmento de tempo compreendido entre os anos 2006 a 2011, também em maior tendência, como identificado no posto Olinda. É notável que, em escalas mais elevadas, o comportamento atmosférico para os postos é semelhante, pois a noção regional do clima, associada aos fatores de superfície, dita a compreensão do ritmo nas localidades quanto à existência de diferenças. É válido reiterar a função das características de cada ambiente ou até mesmo de onde a plataforma de coleta de dados pluviométricos está situada; tais situações são totalmente passíveis de exercerem algum tipo de influência nas variações locais (Ribeiro, 1993; Wanderley *et al.*, 2019).

O percentual de meses listados como secos aumenta gradativamente a partir de 2012, com destaque para os anos de 2016 e 2018, que alternam, a depender do mês, os baixos volumes de precipitação em Paulista. De 2019 a 2022, a tendência de anos secos a normais permanece, sendo o ano de 2022 uma exceção durante esse ínterim devido à maior presença de anos com meses considerados úmidos e super-úmidos. Acerca do referido ano em específico, um estudo

episódico recente Marengo *et al.* (2023) demonstrou que o caráter especial de 2022 consistiu na ocorrência de distúrbios ondulatórios de leste (DOLs), sistema caracterizado por perturbações que carregam umidade para a costa nordestina, resultando em altos níveis de chuvas em um curto espaço de tempo, como foi o exemplo do mês de maio.

Figura 8 - Classificação dos anos segundo método Box Plot para o posto Paulista (APAC) entre os anos de 2000

	a 2022																						
Anos	Janeiro		Fevereiro)	Março		Abril		Maio		Junho		Julho		Agosto		Setembro		Outubro		Novembro		Dezembro
2004	427	2009	254,9	2003	391,3	2009	543,2	2022	653,5	2004	683	2011	588,9	2000	361,8	2014	192,4	2001	123,8	2002	94,9	2000	269,4
2012	242	2004	216,5	2002	309,8	2018	466,3	2011	583,7	2005	636,6	2019	523,3	2005	360,9	2000	191	2010	106,4	2022	78,9	2013	129,8
2000	230,8	2007	179,7	2008	240,4	2011	443,2	2005	562,9	2002	510,1	2000	430	2021	273,2	2013	136,5	2003	71,7	2020	69	2006	111
2011	201,2	2014	173,8	2015	239,5	2021	397,2	2016	549,8	2000	504,8	2013	427,4	2011	267,1	2007	129,5	2014	70,7	2019	59,5	2015	92,1
2001	195,8	2003	154,9	2018	218	2007	367,3	2021	493,8	2022	447,7	2015	374,1	2008	266,7	2003	108,2	2019	55,1	2013	59,2	2021	91,3
2002	195,8	2000	142	2009	217	2006	365	2009	364,3	2010	433,9	2017	370,9	2009	253,4	2001	106,8	2000	47,6	2018	50,1	2010	81,6
2022	192,7	2012	141,6	2019	215,9	2020	309,6	2020	308,6	2007	406	2004	363,4	2001	191,6	2006	87,8	2012	41,4	2014	43,2	2022	73,1
2019	127,1	2019	134,6	2006	183,5	2000	296,3	2014	305	2012	383,6	2009	334,8	2022	186,6	2004	79,1	2017	40,3	2006	36,9	2005	65,4
2009	123,4	2001	129,4	2022	182,8	2016	264	2008	303,2	2019	368,1	2001	306,2	2007	180,5	2019	70,8	2002	40,2	2001	36,8	2014	45,6
2018	121,7	2002	129,4	2016	173,5	2004	254	2013	291	2017	366,8	2020	288	2003	153	2010	70,7	2022	37	2011	35,1	2018	44,7
2016	107,6	2020	117,4	2017	173	2008	234,8	2006	283,7	2006	361,2	2008	267,7	2014	152,3	2020	63,2	2011	34,2	2003	28,8	2017	41
2013	93,4	2011	98,5	2021	155,3	2013	219,2	2004	275,2	2008	360,9	2002	257,9	2013	137,4	2017	57,8	2013	32,5	2005	22,5	2020	38,7
2014	91,3	2021	96,1	2004	148,6	2010	199,7	2007	250	2015	348,8	2003	251,3	2004	137,1	2018	47,6	2008	29	2009	21,4	2003	37,4
2010	74,7	2005	94	2014	140,5	2001	198,2	2017	241,5	2011	337,2	2022	246,5	2017	133,2	2015	40,4	2005	27,1	2016	20,3	2009	35,3
2008	63,5	2015	62,9	2000	126,6	2014	191,1	2002	213,2	2001	326	2012	224,2	2010	132,6	2016	38,6	2004	23,4	2009	19	2012	34,3
2015	57,9	2018	53,9	2011	114,3	2017	185,1	2003	195,1	2003	323,4	2014	222,9	2006	124,3	2009	37,4	2007	20,3	2004	18,1	2016	26,2
2003	41,9	2016	51,9	2007	113,3	2005	155,8	2000	187,4	2020	322,3	2007	203,5	2019	120,2	2008	36,1	2009	19	2021	14,8	2008	25,3
2021	41,9	2013	45,1	2001	111,7	2019	152,6	2010	160,5	2009	304,8	2021	200,2	2012	110,7	2022	31,7	2020	17,8	2007	14,5	2007	23,7
2017	41,3	2010	41,3	2020	94,1	2003	109,6	2015	139,1	2014	282,4	2010	193,3	2015	110,4	2002	30	2016	16,9	2015	13,2	2001	22,8
2007	40,8	2017	30,9	2012	73,4	2022	100,3	2018	131,1	2021	212,9	2006	180,1	2002	103,8	2005	25,2	2021	16	2008	12,5	2011	14,7
2020	11	2008	29	2013	70,9	2002	99,7	2012	108,4	2013	184,4	2005	128,9	2020	101,3	2011	22	2006	14,6	2010	9,9	2019	14,2
2005	8,1	2022	27,7	2010	60,8	2012	55,3	2019	102	2018	151,9	2018	87,3	2018	48,9	2021	15,5	2018	13,5	2017	8,3	2004	12,5
2006	7,6	2006	10,3	2005	47,8	2015	39,6	2001	23	2016	141,7	2016	84	2016	48,4	2012	13,2	2015	7,2	2012	4,7	2022	12,2

Fonte: Organizado pelos autores (2023)

No último posto pluviométrico aproveitado na pesquisa, os diagramas de caixa (figura 8) relativos à posição das chuvas durante as estações do ano demonstraram menor variabilidade do que nos postos anteriores. Desta forma, a presença de dois *outliers* superiores é aparente nas estações mais secas. No verão, o volume atípico esteve relacionado a um valor de 336 mm, no mês de janeiro de 2004; na primavera, por sua vez, o *outlier* foi o acumulado pluviométrico de 117 mm registrado em dezembro de 2000, em que a média mensal para todos os anos foi de 40,5 mm.

Os quartis (1°, 2° e 3°) definiram um intervalo interquartil acentuado no outono e no inverno, embora menor do que nos dois outros postos utilizados neste estudo, visto que, para o posto Itamaracá, tais intervalos ficaram em torno de 66,9 para o outono e 62, 4 para o inverno. O menor intervalo interquartil ocorreu nos meses de primavera, assim como em todas as outras duas estações pluviométricas. Complementando com o disposto na tabela 3, observa-se que o

coeficiente de variância seguiu os percentuais encontrados para os outros postos, ainda que em menor representatividade em Itamaracá. Além de fornecer a caracterização dos valores, a análise da distribuição espacial dos valores de CV é fundamental para a compreensão do risco de eventos extremos (Achite *et al.*, 2021; Belay *et al.*, 2021; Wassie *et al.*, 2022).

25002000(mm) Ontono

Onton

Figura 8 - Sazonalidade dos índices pluviométricos entre os anos 2000 a 2022 no posto Itamaracá

Fonte: Organizado pelos autores (2023)

Tabela 3 - Resumo dos dados gerados por estatísticas descritivas básicas para o posto Itamaracá

	Verão	Outono	Inverno	Primavera
Mínimo	18,5	119	76,4	13,9
Máximo	196,6	313,6	246	97,8
Amplitude total Coeficiente de	178,1	194,6	169,2	83,8
variância	43,3%	22,4%	24,2%	52,5%
Desvio padrão	37,2	51,1	43,6	19,9

O quadro-síntese, expresso na figura 9, trouxe algumas particularidades referentes à dinâmica mensal das chuvas para o posto Itamaracá. Diante disso, entre os anos 2000 a 2005, percebe-se a ocorrência de anos com secos e normais, com especial destaque para o ano hidrológico de 2005, em que a maior parte dos meses foi considerada abaixo do valor compreendido entre o mínimo e o 1° quartil. Em uma análise detalhada dos dados pluviométricos, infere-se que, basicamente, todos os meses, até os considerados chuvosos, estiveram com assimetrias negativas.

De 2006 a 2011, o percentual de anos com meses entendidos enquanto úmidos tem um aumento relacionado, sobretudo, ao ano de 2011, que obteve uma quadra chuvosa bastante intensa e superada apenas pelo quadrimestre de 2022. Uma similaridade entre esses dois anos foi a convergência de chuvas no mês de maio, superando os 500 mm, limiar muito acima da média para esse período. Geralmente, tais precipitações aglutinadas em apenas um mês costumam contribuir de forma substancial para definição de um ano mais ou menos chuvoso para a região. Entre 2012 e 2017, a mesma frequência é observada, com leve aumento para os meses considerados dentro da normalidade. Outrossim, os anos de 2021 e 2022 foram os maiores contribuintes para a existência de meses úmidos e super-úmidos em uma escala recente no posto Itamaracá.

Figura 9 - Classificação dos anos segundo método Box Plot para o posto Itamaracá (APAC) entre os anos de 2000 a 2022

2000 a 2022																							
Anos	Janeiro		Fevereiro		Março		Abril		Maio		Junho		Julho		Agosto		Setembro		Outubro		Novembro		Dezembro
2004	366,2	2004	228,5	2003	364,1	2018	405,6	2016	548,8	2005	530,3	2019	406,3	2008	350,7	2000	170,2	2001	72,7	2022	78,9	2000	117,5
2012	209,2	2009	212,8	2002	270,5	2021	363,2	2022	527,7	2004	521,6	2011	394,2	2005	302,2	2014	163,6	2010	71,8	2002	75,8	2021	93,2
2022	166	2000	165,4	2015	259.9	2009	334.7	2011	516,4	2022	398.5	2013	360	2021	300,8	2013	127,2	2014	62,3	2000	43	2015	88,5
2018	121.1	2003	155.8	2001	222,7	2013	285.7	2021	458	2002	386.1	2000	328,4	2011	231	2007	81.7	2003	61,2	2020	35	2014	76,2
2011	119.5	2020	154.5	2016	214.7	2004	262,5	2005	382,4	2014	376,4	2022	314	2003	195,7	2006	76,5	2000	60.7	2011	29,4	2010	64.7
2002	114.1	2007	134	2008	195,3	2016	261.8	2020	359,8	2013	376.2	2017	298,8	2000	186,4	2001	62.9	2018	57	2006	27,7	2006	63,6
2009	92,9	2014	106,2	2004	184,5	2011	260,6	2009	356,9	2007	370,9	2020	296.2	2014	153,5	2019	61.7	2019	52,4	2018	22,1	2013	60,3
2010	83,5	2012	99,1	2017	181.1	2006	259.7	2017	300,7	2006	351.9	2015	291	2022	144,2	2016	60,8	2008	48,5	2013	18,2	2022	44.8
2014	68	2001	90	2007	176,2	2017	247,8	2007	275,1	2019	344	2012	261,2	2019	141.7	2010	54,8	2012	39.4	2014	16.9	2003	40,4
2016	65,2	2019	79,7	2019	171,6	2007	245,8	2018	253,2	2010	320,7	2009	246,8	2009	139,6	2022	51,1	2002	30,1	2001	16,7	2016	39,8
2019	57,8	2018	72	2000	169,7	2008	212.9	2006	236,4	2009	306,5	2004	245,5	2006	126,1	2009	50,5	2007	28,6	2010	15,4	2018	37,2
2013	54,6	2015	71,8	2022	154,8	2001	211,4	2008	226	2001	283,7	2021	226,5	2013	120,5	2020	48.1	2013	25.1	2009	14	2012	35,1
2008	43.9	2021	68.7	2014	134	2020	192.1	2004	219,9	2017	279,7	2008	191	2007	115,2	2017	48	2021	23,1	2021	12	2009	34,2
2007	36	2016	65,1	2009	123,4	2000	187,5	2000	216,1	2020	275.9	2014	185,2	2001	110,3	2015	37,1	2011	21.8	2012	9.9	2001	28,7
2017	33,3	2011	59,2	2010	114.5	2019	180.8	2003	183.3	2012	267,3	2010	179,8	2010	98,8	2004	35,4	2006	21,4	2003	9	2020	26,7
2015	29,1	2002	54.2	2006	113,7	2022	173,7	2013	178,4	2011	260	2007	168,7	2002	95,7	2018	35,9	2017	21.3	2008	8,9	2007	12.9
2003	25	2008	40	2018	89,3	2010	143,9	2019	161	2015	234,1	2003	163,5	2004	89,2	2021	35.8	2022	19,2	2007	8,5	2008	12,6
2021	16,6	2022	33	2020	86,1	2002	104,7	2015	152,6	2008	233.7	2002	160,4	2018	80,8	2002	35.6	2005	15.3	2016	7.5	2002	12,2
2006	12,4	2017	24,3	2012	66,2	2003	100.9	2014	151,5	2016	211,6	2001	159,4	2017	73,7	2008	32,7	2004	13,7	2004	7,2	2005	11,4
2005	9,4	2005	23,7	2021	66,1	2014	80,5	2002	149,5	2003	178,2	2006	143,6	2012	65,2	2005	22	2020	12,4	2005	7,2	2011	9,3
2020	7,3	2010	20,7	2005	29,6	2005	72	2012	121,7	2021	153.1	2005	81,5	2015	55	2003	16	2015	6,6	2015	4,2	2017	8,9
2001	3,9	2013	19,3	2013	27,3	2015	29,8	2010	103,3	2018	110,6	2018	78,3	2020	52,8	2011	13.4	2009	2.4	2017	3,3	2004	7,5
2000	2,3	2006	4.9	2011	27	2012	21,1	2001	13.9	2000	0,1	2016	54,4	2016	41,6	2012	1,7	2016	2,4	2019	0,7	2019	7

Fonte: Organizado pelos autores (2023)

4. CONCLUSÕES

Enquanto predomina-se a prerrogativa de homogeneidade de cotas pluviométricas para a costa leste do estado de Pernambuco devido, sobretudo, à escassa disponibilidade de dados climáticos em abrangência intermunicipal, o presente artigo demonstrou a possibilidade de haver significativas diferenças de uma cidade para outra, apesar da sua distância geográfica. Do mesmo modo, apesar da metodologia utilizada conseguir produzir bons resultados para o

objetivo proposto inicialmente, é recomendável que pesquisas em escalas de maior detalhe (diária e horária) priorizem métodos e técnicas adaptadas aos dados de precipitação das localidades.

Por apresentar elevada variabilidade, em termos climáticos, os municípios estudados possuem períodos nos quais a chuvas são expressas em maiores ou menores quantidades precipitadas, distribuídas entre meses, sem desconsiderar a abrangência dos extremos e sua contribuição no percentual pluvial localizado. Partindo desse pressuposto, a precipitação em pequena escala pode se diferenciar da precipitação em uma escala mais elevada e tal afirmativa ajuda a explicar os mecanismos de impactos hidrometeorológicos diferenciados em curto e a longo prazo.

5. REFERÊNCIAS

ACHITE, Mohammed *et al.* Analysis of the spatiotemporal annual rainfall variability in the Wadi Cheliff Basin (Algeria) over the period 1970 to 2018. **Water**, v. 13, n. 11, p. 1477, 2021.

AGÊNCIA NACIONAL DE ÁGUA (Brasil) — **Portal Hidroweb.** Brasília, DF. 2023. Disponível em: http://hidroweb.ana.gov.br/. Acesso em: 07 de jun. 2023.

AGÊNCIA PERNAMBUCANA DE ÁGUAS E CLIMA - **Monitoramento pluviométrico**. Acesso em: 07 de jun.2023. http://old.apac.pe.gov.br/meteorologia/monitoramento-pluvio.php.

ANJOS, R.S.; WANDERLEY, L.S.A; NÓBREGA, R.S. Análise espacial da precipitação e possíveis fatores que contribuem para sua espacialização em Recife-PE. **Revista Brasileira de Geografia Física**, [S.l.], v. 13, n. 1, p. 018-034, fev. 2020.

BELAY, A. *et al.* "Analysis of Climate Variability and Trends in Southern Ethiopia". **Climate** 9, no. 6: 96. 2021. Disponível em: https://www.mdpi.com/2225-1154/9/6/96.

BERTONI, J. C.; TUCCI, C. E. M. Precipitation. 2nd ed. Porto Alegre, Brazil, 2001.

BRUBRACHER, J. P., OLIVEIRA, G. G. D., GUASELLI, L. A. Preenchimento de falhas em séries temporais de precipitação diária no Rio Grande do Sul. **Revista Brasileira de Meteorologia**, *35*, 335-344, 2020.

CALDANA, N. F. S. *et al.* Ocorrências de alagamentos, enxurradas e inundações e a variabilidade pluviométrica na Bacia Hidrográfica do Rio Iguaçu. **Revista Brasileira de Climatologia.**, [S. 1.], v. 23. Disponível em: https://ojs.ufgd.edu.br/index.php/rbclima/article/view/14099. Acesso em: 26 jul. 2023.

COSTA, J. C. *et al.* Validação dos dados de precipitação estimados pelo CHIRPS para o Brasil. **Revista Brasileira de Climatologia**, v. 24, 2019.

DIAZ, C.C.F.; PEREIRA, J.A.D.S.; NÓBREGA, R, S. Comparação de dados estimados pelo método da ponderação regional (pr) e dados estimados pelo trmm para o preenchimento de falhas de precipitação na bacia hidrográfica do rio Pajeú. **Revista Brasileira de Climatologia**, v. 22, 2018.

DOS SANTOS, D, D.; GALVANI, E. Proposta para determinação de eventos extremos de chuva no litoral norte paulista. **Revista Brasileira de Climatologia**, v. 25, 2019.

FONSÊCA, D, N.; CORRÊA, A.C.B.; DA SILVA, A.C. Compartimentação geomorfológica da região metropolitana do Recife (RMR) a partir da análise morfoestrutural. **Geo Uerj**, n. 29, p. 201-219, 2016.

FONTÃO, P.A.B.; FERREIRA, R.M.A. As chuvas no Sistema Cantareira: avaliação dos reflexos no manancial visando a segurança hídrica da região metropolitana de São Paulo. **Revista de Geografia-ppgeo-ufjf**, v. 12, n. 2, p. 218-238, 2022.

FONTÃO, P.A.B.; ZAVATTINI, J.A. Variabilidade das chuvas anuais na Região Metropolitana de São Paulo (RMSP) e no Sistema Cantareira: classificação e frequência dos anos-padrão (Variability of annual rainfall in São Paulo Metropolitan Region (RMSP) and Cantareira System: classification and frequency of the standard-years). **Revista Brasileira de Geografia Física**, v. 12, n. 2, p. 457-469, 2019.

GALVANI, E.; LUCHIARI, A. Critérios para classificação de anos com regime pluviométrico normal, seco e úmido. Climatologia aplicada: resgate aos estudos de caso. 1ed. Curitiba: CRV, 2012.

GIRÃO, O; CORRÊA, A, C, B.; GUERRA, A.J.T. Influência da climatologia rítmica sobre áreas de risco: o caso da região metropolitana do Recife para os anos de 2000 e 2001. **Revista de Geografia,** Recife, v. 23, n. 1, p. 3-40, 2006.

GOZZO, L, F. *et al.* Padrões climatológicos associados a eventos de seca no Leste do Estado de São Paulo. **Revista Brasileira de Climatologia**, v. 28, 2021.

HAMMER, Ø.; HARPER, D.A.T. Past: paleontological statistics software package for educaton and data anlysis. **Palaeontologia electronica**, v. 4, n. 1, p. 1, 2001.

MARENGO, J. A. *et al.* Flash floods and landslides in the city of Recife, Northeast Brazil after heavy rain on May 25–28, 2022: Causes, impacts, and disaster preparedness. **Weather and Climate Extremes**, v. 39, p. 100545, 2023.

MARTINS, E. S. P. R; VASCONCELOS, F. C. O clima da região Nordeste entre 2009 e 2017: monitoramento e previsão. **Parcerias estratégicas,** v. 22, n.44, p.63-80, 2017.

MELLO, C.R.D.; SILVA, A.M. Métodos estimadores dos parâmetros da distribuição de Gumbel e sua influência em estudos hidrológicos de projeto. **Irriga**, v. 10, n. 4, p. 334-350, 2005.

OSCAR JÚNIOR, A.C.D.S. Extremos atmosféricos e desastres hidrometeorológicos em Duque de Caxias (RJ). **Revista Brasileira de Climatologia,** [S. 1.], v. 17, 2021. Disponível em: https://ojs.ufgd.edu.br/index.php/rbclima/article/view/13852.

RIBEIRO, A, C. As escalas do clima. Boletim de Geografia Teorética, v. 23, n. 45-46, p. 288-294, 1993.

SANTOS S. R. Q.; CUNHA, A. P. M., NETO, G. G. Avaliação de dados de precipitação para o monitoramento do padrão espaço-temporal da seca no nordeste do Brasil. **Revista brasileira de climatologia**, v. 25, 2019.

SILVA, D, F. *et al.* Caracterização de eventos extremos e de suas causas climáticas com base no índice Padronizado de Precipitação Para o Leste do Nordeste. **Revista Brasileira de Geografia Física,** v. 13, n. 2, p. 449-464, 2020.

WANDERLEY, L.S.A *et al.* A relação entre o relevo e o clima como proposição de caracterização da fisiologia da paisagem em Pernambuco, Brasil. **Geo UERJ**, n. 34, p. 40942, 2019.

WASSIE, S, B.; MENGISTU, D, A.; BERLIE, A, B. Trends and spatiotemporal patterns of meteorological drought incidence in North Wollo, northeastern highlands of Ethiopia. **Arabian Journal of Geosciences**, v. 15, n. 12, pág. 1158. 2022.